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The paper deals with quantifying aromaticity in π-electron networks by unsophisticated MO techniques. 
The focus is placed on local aromaticity measures associated with individual benzenoid rings. We revised 
the ring aromaticity index due to Cioslowski et al (2007) by including explicitly net charges and electron un-
pairing effects. Our previously introduced quasi-correlated tight-binding (QCTB) approximation serves here 
as an easily available tool for taking account of π-electron correlations. The latter crucially influence the be-
havior of large and even small conjugated π-structures with a nontrivial topology. Numerical applications of 
Hückel and QCTB models to measuring local aromaticity are reported for various structural classes (poly-
cyclic aromatic hydrocarbons (PAHs), graphene nanoflakes, and others). We analytically investigate the 
aromaticity in conjugated monocycles CNHN (neutral and charged ones). Furthermore, in the same manner 
several PAH structures (oligocenes, pyrene, perylene, etc.) are considered in their charged states, and the 
results are compared with those of related quinoid-type systems, such as p-diphenoquinodimethane. It is 
shown that, unlike usual PAHs, quinodimethane structures tend to increase their aromaticity in dicationic 
(dianionic) form. In our studies of nanographene aromaticity we find a decrease of the local aromaticity as 
we move to a center of graphene structures, that is in a sharp contrast to the predictions of NICS (nucleus 
independent chemical shift), a rather criticized approach. A particular emphasis is being put on measuring 
local aromaticity in highly correlated π-systems. Typical non-Kekule hydrocarbons (e.g., triangulene radical 
and polyradicals), are also studied within QCTB by which characteristic difficulties caused by the occurrence 
of many non-bonding π-MOs, are simply obviated. 

Keywords: aromaticity measures, polycyclic aromatic hydrocarbons, nanographenes, Hückel MOs, open-
shell systems, polyradicals, quasi-correlated tight-binding approximation. 

 

Introduction 

Aromaticity is a deep and difficult concept which raised many controversy questions of interpreta-
tion. On the one hand, the concept is treated as one “of immense practical importance” [1]; on the 
other hand, some researchers take it as a suspicious notion (e.g., see interesting discussions in [2,3]). 
Nevertheless, polycyclic aromatic hydrocarbons (PAHs), heterocyclic compounds and many others 
definitively reveal their aromaticity character, and the vast majority of papers were dedicated to treat-
ing this fundamental chemical notion in quantitative terms; for recent reviews and new articles see 
Ref. [4-14]. 

Several important issues still remain incompletely resolved within the theoretical approaches to 
aromaticity. The cyclic delocalization of -electrons is one of them. Indeed, this delocalization is the 
underlying feature of PAHs, and serves as a principal characteristic of aromaticity at all. There exist 
many approaches to “measure” the cyclic delocalization in aromatic systems by structural [4], mag-
netic [15], and electronic indexes (of one sort or another) [8-13]. Unfortunately, some of them, par-
ticularly, magnetic measures, can lead to results that are not consistent with chemical expectations. 

The above consideration motivates us to apply a special cyclic delocalization index which would 
directly reflect electronic cyclicity of benzenoid or other structural subunits. Among the existing aro-
maticity measures, the so-called NGI  index, which was introduced in Ref. [16] and investigated in 

Ref. [5], deserves more attention than it has received thus far. In the present paper we revive and ex-
tend the NGI -approach, making improvements to it. These improvements are mainly concerned with a 

simplified inclusion of both electron correlation and atomic charge effects. 
The essential part of our approach is an explicit incorporation of an electron-correlation factor to 

the resultant cyclic aromaticity index. We achieve this by invoking the recently introduced quasi-
correlation tight-binding model (QCTB) [17,18]. Notice that the typical tight-binding (ТВ) model for 

https://doi.org/10.26565/2220-637X-2018-31-01
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-electrons is tantamount to the Hückel MO (HMO) method, so we will make no distinction between 
TB and HMO schemes. The proposed cyclic aromaticity index is easily computed within the frame-
work of semiempirical models of TB type, and it is used here for sufficiently large PAHs and graphene 
nanoclusters. 

 

Cyclic aromaticity for π-conjugated fragments 

Our approach, as many others, is founded on the conventional -electron characteristics which are 
named electron bond orders, more exactly Coulson’s mobile bond orders. Like `experimental` bond 
orders that are used in Pozharski and Bird aromaticity scales [19,20], the Coulson bond order ex-
presses, in relative units, the bond strength. Before giving the approach to be considered it is suitable 
to start with one very simple but lucid quantification scheme for the local aromaticity from Refs. 
[21,22]. 

In the above cited works, the bond-order index of aromaticity (BOIA) of the form 
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is assigned to each benzenoid rings. In Eq. (1) aP  is bond order of ath chemical CC bond in the 

given 6-atom ring, and 0P  is a reference value for the isolated benzene molecule. In practical computa-

tions based on usual Hückel and Pariser-Parr-Pople -approximations, 3/20 P . Slightly more com-

plicated are the definitions of the so-called para delocalization index (PDI) [5], quantum similarity 
[23] and quantum fidelity [8] indexes, and several others which are also based on using bond orders. 

The certain drawback of the many above mentioned indexes is that they permit nonzero values 
even for benzenoid rings with a zero bond order between neighboring atoms, i.e. when no cyclic 
electron delocalization occurs (e.g., in partially hydrogenated rings). It means that the discussed 
indexes are not sufficiently targeted for describing the cyclic delocalization itself. It is not hard to un-
derstand that the use of arithmetic mean in Eq. (1) and related equations is the cause of such unwanted 
behavior. This obstacle is easily removed by replacing, in Eq. (1), the arithmetic mean by a geometri-
cal mean. The previously cited NGI  index from Ref. [16] is just the measure of this type (see Eqs. (8) 

and (13) therein). Thus, we can start now by adopting NGI  index, from which we first take out its so-

phisticated normalization factor. It gives us a suitable quantity which will be termed the cyclic aro-
maticity index (CAI). The explicit expression for the given ring r is: 
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Here we imply notations from Eq. (1), that is, all aP  in above are related to cycle r. Furthermore, in 

Eq. (2) the squared bond orders are, in fact, averaged over, so that we deal with the bond-orders due to 
Wiberg [24]. A more general is the definition of CAI for arbitrary cycle of size m: 
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It is also useful to introduce atomic aromaticity indexes (AAI) condensed to atoms. For this we will 
consider a cyclically connected backbone of the entire molecule without exocyclic atoms, that is a 
cyclic part of the whole structure. The individual values of AAI indexes will be denoted by aAAI , 

with a specifying the given atom of the cyclic part. Explicitly, aAAI  are computed as follows: 
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Here jaP  is -bond order for the ja C C bond where atom j being adjacent to atom a, also belongs to the 

cyclic part. In case of the border atom a having only two neighbors, we have 
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Moreover, by construction we adopt 0AAI a  for every exocyclic atom. The AAI set Maa 1}{AAI  is 

computed for all M atoms in the cyclic part of the molecule, and it allows one to approximately repre-
sent atomic contributions to the overall aromaticity. 

As will seen in the next section, the given definitions are suitably applicable for cyclic-structure 
hydrocarbons (PAHs and other alternant systems). The latter, by definition, contain no odd carbon 
rings and heteroatoms. These are the so-called bipartite graphs in graph-theoretic terms. The remark-
able fact for neutral (uncharged) alternants is that they have no -electron net charges (a well-known 
consequence of the Coulson-Rushbrook pairing theorem). Otherwise, the -electron net charges 

Maaq 1}{  appear, and they can suppress aromaticity (by increasing reactivity of polar molecules). Of 

course, net - charges do not occur in the benzene molecule (within conventional -theories). Hence, a 
certain charge factor, say, such as ||1 aq  for each atom a, must be additionally included into the 

above relations. In doing so, we imply that index a in aP  can be also treated as a number of the ‘first’ 

atom in the ath two-center bond, so aq  is the net charge on this cyclic atom. At this stage we take, 

instead of Eqs. (3) and (4), the following definitions: 

 m
m

a
aa PPqr /2

1
0 ]/|)|1([]CAI[ 



  (5) 

 3/2
0

3

1

2 )/(|)|1(AAI PPq ja
j

aa 


  (6) 

Obviously, all net charges and bond orders here are related to the given ring r. 
 

Measuring cyclic aromaticity for small conjugated systems 

To assess the quality and application of the proposed aromaticity measures, let us study, within the 
conventional Hückel approximation, several examples, mainly focusing on alternant structures. The 
simplest is a model case of plane annulenes, the completely conjugated monocycles CNHN with N car-
bon atoms. In these model monocycles, all the AAI indexes are equal, and for the given N they will be 
denoted by ][AAIC N . In the case of -ions, number N will be supplied here by the superscript show-

ing a total charge of the system. Evidently, ][AAIC N  coincides with the CAI values defined in Eq. (5). 

For the reference benzene molecule we naturally have 1]6[AAIC  . Simple computations on typical 

monocycles (including ions) produce the following results: 

603.0625/)53(72]5[AAIC  , 

681.02401/])7/2cos[21(324]7[AAI 2
C   , 

728.0729/])9/4cos[2]9/2cos[21(64]9[AAI 2
C   , 

942.050/])53(9]10[AAIC  , 

...91189.0/9][AAI 2
C   . 

Together with 1]6[AAIC  , they show that in our scheme the aromaticity degree of stable monocyclic 

systems satisfying Hückel (4n+2) rule, nonmonotonically varies with increasing N, and goes to the 
limiting value ( %91 ). 

Next, in Table 1, we provided the Hückel-based characrerization of local aromaticity in the ground 
states of naphthalene, anthracene and others typical PAHs. The results for ring aromaticity measure, 
Eq. 5, are compared with arom -indexes, that is, with our another ring aromaticity measure, defined 
previously in Ref. [8], Eqs. (7.3) and (7.4). In Table 1, as well as in other tables and figures, the visu-
alization of atomic distributions }{AAIa  is also shown. Each aAAI  value is displayed as a red circle 

with radius proportional to this aAAI value. From the table we see that the “most aromatic” are outer 

rings of the studied systems. Judging from the data collected in Ref. [19] for linear polyacenes and 
related systems, this feature is not reproduced by other aromaticity scales such as NICS in Ref. [14], 
PDI and HOMA (the last is described in Refs. [1,4]) . At the same time, the more sophisticated scales 
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from Ref. [22,25] (six–center indexes etc) give the picture which is qualitatively(but not quantita-
tively) the same as that of our CAI scale. Interestingly enough, a similar reasonable behavior was ob-
served as well when using the quantum fidelity measure of aromaticity from Ref. [8]. 

 
Table 1. CAI and arom distributions (both in %) for small -structures at the Hückel level. AAI distri-
butions are shown in red. 
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Observe that the CAI aromaticity scale is quite different , by its nature, from the arom  scale from 

Ref. [8]. Indeed, arom  is produced by estimating a local energy of benzenoid cycles (a counterpart of 
aromaticity stabilization energy), whereas CAI is directly calculated from the corresponding ring bond 
orders. Nevertheless, these two scales behave very similarly in all respects. 

An interesting case is the charged aromatic molecules. To be more specific, let us take the three 
doubly charged molecular ions (dications). For them we give, in Fig 1, the local aromaticity diagrams 
along with the corresponding atomic net -charge distributions in their ground states. We observe an 
understandable decrease of local aromaticity for all benzenoid subunits (compare the respective CAI 
values in Fig. 1 and Table 1). It is natural that as a rule less charged atomic sites turn out to be the 
most aromatic. 

 

 
  

 

 
(a) 

 
(b) 

 
(c) 

Figure 1. Dicationic states of tetracene (a), pyrene (b), and perylene (c) within HMO. Top panel: CAI 
(in %) and AAI distribution (in red). Bottom panel: distributions of net atomic charges (in brown). 

 
A specific case of quinoid molecules is also worth consideration. In Fig. 2 we have displayed the 

data obtained for a double-quinoid structure (p-diphenoquinodimethane). When treating this hydrocar-
bon in its neutral form we took into account the corresponding bond-length altenation. The standard 
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alternation scheme of resonance integrals is used with factor 125.01  (the upper sign is for the es-
sentially double CC bonds, and the lower for the ‘simple’ CC bonds). In case of the dication, such a 
bond alternation was ignored because the alternation is practically absent, as follows from an analysis 
of the most contributing valence-bond resonance structures [8,26]. From Fig. 2 we see that the dica-
tionic state is even more aromatic than the initial neutral state of the diquinoid (in spite of nonzero net 
-charges), and it is opposite to the behavior of the PAH molecules of a similar size. This result is 
readily explained by the comparable analysis of valence bond schemes (for precedent cases, see Refs 
[8,26]). In passing, recall that cationic and anionic forms of alternants have the same -electron den-
sity matrix, so -aromaticity of the ionic alternant systems is indepengent of their charge sign; e.g., the 
aromaticity is same for dications and dianions. Notably, the similar HMO approach can be applied 
without difficulty to heterocyclic molecules, as our preliminary computations for several azaheterocy-
cles show it. 

 

  

  
Figure 2. The neutral form (in left) and dicationic form (in right) of p-diphenoquinodimethane within 
HMO. CAI are given in %; AAI distributions are shown in red, and atomic net charge distribution in 
brown. 

 

Local aromaticity for singlet open-shell and electron correlated states 

Now we turn to a more refined aromaticity scale which takes into account -electron correlation ef-
fects explicitly. In so doing we do not go essentially beyond the standard Hückel model, thus retaining 
the key graph-theoretic benefits of the whole approach. It becomes possible by employing the QCTB 
technique mentioned in the introductory section. Notice that usually high-spin electronic states (bi-
radical and polyradical structures) are electron-correlated states in their nature, and strictly speaking, 
they are beyond conventional one-electron schemes. Nevertheless, for alternant systems we are able to 
analyze high-spin states on an equal (QCTB) footing with others. Before doing it we first sketch very 
briefly main points of the required formalism. 

QCTB [17,18] is based on a crude description of -electron systems by using the alternant MO 
(AMO) theory. The Devison-Amos model [27] (see also Ref. [28]) can be regarded as a precursor of 
our QCTB scheme that is but one-parametric AMO model with a fixed spin parameter  ; the last 
predetermines splitting of the different orbitals for different spins. The approach is consistently appli-
cable to alternant hydrocarbons only. 

First, we write down the QCTB energy spectrum: 

 22QCTB
ii   ,   22QCTB

ii   , (7) 

where ni 1 , and sets }{ QCTB
i  and }{ QCTB

i  are related to occupied and virtual MOs, respectively. In 

Eq. (7), a set }{ i  of nonnegative Hückel orbital energies (graph spectrum) is produced by the square 

root of the eigenvalues of BB , with B being a submatrix of the full topological matrix (adjacency 
matrix). The latter allows the standard block-matrix representation: 

 
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Nowadays the Hückel (graph) spectrum can be quickly computed for multi-thousand atom systems 
even by laptops (to say nothing of the fact that the graph spectrum is easily available for many poly-
mer structures with translation symmetry). 

An important result of electron correlations is the occurrence of effectively unpaired electrons 
(EUE) in formally closed-shell singlet molecules (see review [17] and references therein). The main 
entity of the EUE formalism is EUE density matrix, UD  [29] (or effD  in Ref. [17]). It describes, in 
particular, how unpairing electrons are distributed over the entire molecule. The respective EUE densi-
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ties, which are condensed to atoms, constitute a set of the EUE atomic indexes, MaaD 1
U}{ , and the 

latter will serve us as the key instrument to incorporate electron correlation effects into the aromaticity 
measurement. In Appendix A we show in detail that QCTB also provides a generally correct account 
of the EUE properties of -conjugated radicals and polyradicals. Interestingly, quite recently in Ref. 
[30] a special analysis of the QCTB bond orders was proposed, which aimed to describe bond alterna-
tion effects in terms of implicit spin–spin repulsion forces [31]. 

We now suggest that local aromaticity must incorporate not only a benzenoid similarity of the ring 
bond orders, but also a change of the electron unpairing in the rings. To be consistent, we must take 
account of a small electron unpairing in the benzene molecule itself. Let us denote by U

0D  the EUE 

atomic -density in the isolated benzene molecule. Then, for the given atom a, factor U
0

U1 DDa   

can be used when accounting for a diminution of aromaticity due to electron unpairing. Hence, we 
have the resultant definition of the ring aromaticity at the QCTB level: 

 m
m

a
aaa PPqDDr /2

1
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U
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The respective atomic delocalization index is 
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with the corresponding change in the case of atom a having two neighboring atoms [see Eq. (4’)]. 
Here the computations are performed with using the QCTB matrix P given in Eq. (A1). 

Applying QCTB to the benzene-shell, we find the reference value 

 3/)4/21/23( 22U
0  D  (11) 

needed for Eqs. (9) and (10) [for the derivation see Appendix A]. Furthermore, in Eqs. (9) and (10) the 
HMO reference value 3/20P  is also replaced by the respective QCTB value of the form 

 3/)4/21/1( 22
0  P . (12) 

Taken together, Eqs. (9) - (12) give a complete set of relations for computing the local aromaticity 
indexes within QCTB. In our practical computations, splitting parameter   was taken as previously in 
Refs. [17,18]: 24/7 . 

Let us now consider pertinent examples that illustrate the introduced QCTB aromaticity measures. 
We take several tetramethylene-based aromatic diradicals and other radical structures with the 
phenalenic motif (Table 2). These and closely related systems are frequently discussed in literature 
[32-35]. The case of tetramethylenic radicals (structures 7 and 8 in the table) is of particular interest 
because the singlet-state diradicals of this type belong to the class of the so-called non-Kekulé conju-
gated molecules (no classical valence formula with alternating single and double bonds). It means that, 
strictly speaking, they cannot be treated by the simple TB -model. For such diradicals the conven-
tional Hückel model leads, in practice, to charge symmetry breaking solutions due to a degeneration of 
frontier MOs. In other words, the singlet biradicals are the open-shell systems which require suffi-
ciently advanced electron-correlation models. But in QCTB owing to splitting different orbitals for 
different spins one can easily manage these open-shell problems, thus providing resulting symmetry-
correct solutions. 

As a result, for the singlet open-shell systems we obtain a large amount of EUE ( 2U N ) as well 
as a significant spreading of EUE over the whole molecule (see the last column in Table 2). Because 
of that the ring aromaticities are reduced, especially for tetramethylenic radicals. It is also worth not-
ing that atomic local aromaticity indexes aAAI  are rather marked even for sites with nonnull values of 

U
aD . Furthermore, the aAAI  values can be treated as the chemical stability (passivity) index of the 

given atom a in respect to substitution and/or radical attack in the molecule of question. So, a1/AAI  

might be used as conditional atomic reactivity indexes (in the benzene units) but further discussion of 
this is beyond of scope of the paper. 
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Table 2. Aromaticity and effectively unpaired electrons in open-shell-structures with spin value S at 
the QCTB level. Distributions ]}[{CAI r  are displayed in %; AAI indexes are shown in red, and atomic 

EUE distributions }{ U
aD  in green. 

No S ]}[{CAI r  }{ U
aD  

7 0 
 

 

  
( UN =2.56) 

8 0 
 

 
( UN =2.91) 

9 1/2 

 
 

( UN =1.31) 

10 1 

 

 

 
( UN =2.74) 

11 1 

 
 

( UN =2.50) 

12 3/2 

 
 

 

 
( UN =3.75) 

 
We call attention to the fact that it is typical that polyradials with large EUE degree (e.g,. the last 

system in Table 2) actually remain sufficiently aromatic. Possibly, this internal stability of the aro-
matic radicals is responsible for the fact that the here treated open-shell structures are quite realistic. 
More than that, the ingenious experimentalists succeeded recently to synthesize the related high-spin 
radical structures at last. These are a derivative of 1,14:11,12-dibenzopentacene and triangulene (struc-
tures 10 and 11 in Table 2) [36,37]. 

 

Large graphene-like molecules 

In this section we present the aromaticity characterization of graphene nanoflakes of different 
structural types (Figs. 3 and 4). The first system, C154, Fig. 3 is related to the periacene - type nanogra-
phenes which we discussed previously in Refs [14,17,18]. The second (C192) is the antidote structure 
taken from Ref. [38]. The third, C426, Fig. 4, has triangular zigzag graphene subunits as building 
blocks. As a system with the compensated topological frustration it was proposed in Ref. [39] for fu-
ture spintronics applications. In Ref. [18] we examined the EUE properties of this C426, named in Ref. 
[39] ‘Kekulean logic gate structure’ (KLGS). 
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( 8.8U N ) 

 
 

( 8.10U N ) 
Figure 3. Local aromaticity and effectively unpaired electrons in nanoflakes C154 and C192 at the 
QCTB level. The left panel: CAI (in %) and AAI (in red). The right panel: EUE distributions (in 
green). 

 

 

 
( 8.26U N ) 

Figure 4. Local aromaticity and effectively unpaired electrons in the KLGS nanogaphene C426. The 
left panel: CAI (in %) together with AAI distribution (in red). The right panel: EUE distribution (in 
green) at the QCTB level. 

 
For the periacene molecule C154 we observe a higher aromaticity at armchair edges (along the long 

axis of the molecule), and it is in agreement with the results of Refs. [11,14,40] for related structures 
in alternative considerations. Concurrently, in our approach the local aromaticity decreases as we 
move to the center of graphene structures, and this behavior contradicts the NICS (nucleus independ-
ent chemical shift) predictions discussed in [11]. The analysis of the rest structures and other systems 
(not reported here) draws the above conclusion that aromaticity is decreased in the inner core of the 
graphene clusters. As to the cited NICS predictions we only remark that it may be strongly doubted 
whether NICS can provide a reliable description of the relative aromaticity at all [6,41,42]. 



Cyclic aromaticity within Hückel and quasi-correlated Hückel-like models 

 14

Whilst this paper was in preparation a new analysis of -electron aromaticity was reported [43], 
and one of the Referees kindly informed the author about this work. The cited paper motivated us to 
provide in Appendix B a supplementary example which elucidates peculiarities of using bond orders 
in -theories. 

 

Conclusion 

Summing up, we would like to stress once more that aromaticity must be regarded as one of the 
most important chemical paradigms. It unites fundamental aspects of electronic and structural behav-
ior of various conjugated systems – from small molecules to large nanoclusters. 

As to the practical side, it may be worthwhile to keep in mind a quotation from Ref. [44]: “As a 
concept, aromaticity is not directly accessible experimentally, but its consequences are.”. For instance, 
the stability of -conjugated networks is directly connected with aromaticity, and in our paper we have 
just faced such a situation in section 4. At the same time, we must not forget about “the many guises of 
aromaticity” [45]. 

It the present paper we have revised the so-called ring indexes of aromaticity earlier defined by Ci-
oslowski et al in Ref. [16] (see also Ref [46]). We stressed upon the cyclic delocalization as an under-
lying characteristic of aromaticity, and used an appropriate term “the cyclic aromaticity” from Ref. 
[47] . Starting from the simple Hückel model we incorporated net charge and electron correlation ef-
fects into the ring aromaticity indexes, while retaining a simplicity of the whole approach. It allowed 
us to investigate, in an elementary way, the large open-shell systems which are electronically of bi-
radicaloid or polyradical nature (sections 4 and 5). The atomic aromaticity indexes (10) per se also 
deserve attention when chemical reactivity rather than benzenoid or total aromaticity is the main fo-
cus. Our experience in working with the proposed aromaticity measures, Eqs. (9) and (10), suggests 
that after a small modification their usage can be extended to more sophisticated methods. In particu-
lar, the generalized bond order indexes which are based on the cumulant analysis of the two-electron 
density matrix (see, e.g. [48]) should be used for bona-fide many-electron approaches. Seemingly, also 
realistic would be the perspective to treat, in the same manner, heteroaromatic polymers, nanotubes 
and other quasiconjugated networks. 
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Appendix A. Effective unpaired electons within QCTB 

Below we briefly outline the procedure for determining EUE density matrix UD  within QCTB. 

Starting from our initial work [49], the QCTB scheme was applied only to the closed-shell singlet 
states of alternant hydrocarbons. Now, following Ref. [18], we extend the consideration, and show that 
QCTB is also applicable for analyzing aromaticity in high-spin ground states of alternanant diradi-
cals/polyradicals. Notice also that in general the key idea of QCTB was in fact contained in Ref. [27] 
(which remained unknown to us for a long time). For -polymer structures, a related approach was 
elaborated in Ref. [50] and many others Tyutulkov’s papers. 

We refer the reader for details of QCTB to review [17], and begin with the explicit representation 
of the ordinary density matrix (charge and bond order matrix), P, at the QCTB level: 

 -1/222
toptop )( IhhIP  . (A1) 

The basic matrix of the EUE theory is the density matrix oddD defined in Ref. [51]. It describes a de-

viation of P from its one-determinant pattern. More exactly, oddD  is a duodempotency deviation ma-

trix, that is 2odd 2 PPD  . Within QCTB this matrix allows the explicit representation: 

 -122
top

2odd
)( IhD    (A2) 

(see Ref. [18], Appendix D). From it the useful expression for UD  is derived to be 
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 2/1U )( oddDIID  . (A3) 

The above result provides a consistent EUE characterization within the hole-paricle approach [38] 
which for the ground state is equivalent to the EUE theory given in Ref. [29]. By using a spectral reso-
lution of matrix toph , Eq. (8), we obtain the working expression for atomic densities of the unpaired 

electrons, that is diagonal matrix elements ( UU
aaa DD   ): 

 



M

j
jjjaa CD

1

2/1222U ])(||1[||  , (A4) 

with jaC  being atomic expansion coefficients for the j th Hückel MO of energy j . In doing so, the 

total number of unpaired electrons, which by definition is UU Tr DN  , can be presented as the spec-
tral sum: 

 )/||1(
1

22U 



M

i
jjN  . (A5) 

With this, we have identity U

1

U
a

M

a

DN 


 . Interestingly, Eqs. (A4) and (A5) can be directly extended to 

nonalternant systems too, but this possibility requires additional testing. 

We infer from Eq. (A5) that arbitrary alternant polyradical has indeed a high UN  value for any  , 
namely, 

 0*
U nnN  , (A6) 

where we use notation, *n  and 0n , for the corresponding numbers of starred and unstarred -centers. 

Really, it is well known that 0* nn   is just a number of zero-energy MOs (more exactly, of nonbond-

ing MOs), and condition 0* nn   provides existence and stability of radical/polyradical states as the 

ground states of these -structures [52]. Turning to Eq. (5) we realize that for such structures at least, 

0* nn   terms in Eq. (A5) are equal to 1; other terms are certainly nonnegative, and this leads to ine-

quality (A6). If we recall the known Ovchinnikov-Lieb rule for the ground-state spin, S, of the alter-
nant (bipartite) networks [53,54], then (A6) can be rewritten as follows: 

SN 2U  , 

where UN  at the QCTB level is determined by Eq. (A5). We see that the elementary expression (A5) 
affords a correct EUE picture by using only a Hückel-like framework. 

Let us take, as a simple example, the benzene molecule for which the orbital energy spectrum }{ j  

is well known: 
}{ j {-2, -1, -1, 1, 1, 2}. 

Substituting these values into Eq. (A.5), we find )4/21/23(2 22U  N . Due to symmetry 

we have U
0

U 6 DN  , where U
0D  is the EUE atomic density for carbon atom in the benzene molecule. 

It gives Eq. (11) for U
0D , that is the reference value needed for computing QCTB aromaticity indexes 

by Eqs. (9) and (10). Moreover, with somewhat more work, we obtain from Eq. (A1) the explicit ex-
pression (12) for the reference bond order 0P . 

 

Appendix B. Which bond orders are preferable for aromaticity measures 

This appendix is appropriate to be added in a general context of the aromaticity analysis which 
draws on the bond order theory. We recall that there are at least two key definitions used for -electron 
bond orders (if ignoring the experimental bond orders mentioned in section 2) . The most popular and 
most consistent is the definition based on one-electron density matrix theory. In its simplest MO reali-
zation this leads to the well-known classical bond orders due to Coulson. These ones and their QCTB 
counterparts are employed in the present work. Another definition of -bond orders is due to Pauling 
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and Ruedenberg [55]. Let us denote the Pauling-Ruedenberg bond order matrix by R-P
P .Then for 

‘nonsingular’ ( 0]Det[ top h ) benzenoid systems, R-P
P can be obtained as an inverse of the Huckel 

Hamiltonian matrix [56]: 

 -1
top

R-P
hP  . (B1) 

This elegant relation was analyzed and used in many papers. It is also suitable to be applied when dis-
cussing local aromaticity in the spirit of the recent works [43,57,58]. However, there is one unpleasant 
disadvantage with R-P

P . It turns out that one can encounter the cases when 0
R-P P  even for chemically 

bonded carbon atoms ),(  ! The specific perylene example having 0
R-P P  was mentioned in Ref. [59] 

(for the related critique of R-P
P  see also Ref. [60]). Moreover, it is possible to find large classes of 

PAHs where the Pauling-Ruedenberg theory predicts such unnatural zero-valued -bond orders for 
chemical C-C bonds. For instance, the well-known periacene structures, such as C154 in Fig. (1), repre-
sent just such a class of molecules. We see that using Pauling bond orders is not generally wholly 
satisfactory procedure, and it warns us to be cautious when analyzing local aromaticity by the tech-
nique from Refs. [43]. 

Nevertheless, it would be interesting to compare the results of Randić and Balaban with ours. As a 
preliminary study, let us take the specific example of a double peropyrene molecule given in the cited 
work.This system termed here as diperopyrene is dislayed in Fig. 5. The molecule has no anomal zero 
Pauling bond orders, and apparently, the results from Ref. [43] should be resonable in this case. An 
interesting point in papers [43,58] is taking into account the so-called migrating Clar sextets when 
forming local benzenoid aromaticity. For various aspects of the Clar theory the reader is also referred 
to Refs. [11,61-63]. 

 

 
Figure 5. Ring labels for diperopyrene. 

 
The obtained results are given in Table 3. In this table, the data from Fig. 7 in Ref. [43] are pre-

sented in the rescaled form (by factor 1/3) for making them comparable with ours. By inspecting the 
table one can conclude that the used aromaticity scales are all qualitatively similar; e. g., the local 
aromaticity value of the central ring in diperopyrene is lesser than all other values. Concurrently, we 
observe certain quantitative differences between the results of Ref.[43] and ours. In particular, in the 
Randić-Balaban approach, we have a seemingly too large aromaticity measure in the terminal rings, 
and a too low one in the central ring. Notice that the electron correlation at the QCTB level slightly 
enhances the local aromaticity. At last, again turn attention to the fact that energetic aromaticity in-

dexes ][arom r  from Ref. [8], and the QCTB aromaticity measures by Eq. (9) are very similar. 
 

Table 3. Rescaled ring indexes from Ref. [43], local energy indexes arom , and aromaticity indexes 
CAI for benzenoid rings of diperopyrene at the TB and QCTB levels. Rings A, B,… are shown in 
Fig. 5; all values are in %. 

Cycles Method 
A B C D E 

Ref. [43] 89 72 63 80 48
CAI [TB] 72 67 56 69 55
arom , Ref. [8] 79 71 57 73 67

CAI [QCTB] 76 71 58 72 58
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A.В. Лузанов. Циклическая ароматичность в методе Хюккеля и в квазикорреляционном хюккелеобраз-
ном подходе. 

НТК «Институт монокристаллов» НАН Украины, проспект Науки, 60, Харьков, 61000, Украина 

В статье рассматривается количественное мероопределение ароматичности -электронных структур 
простыми схемами МО. Делается акцент на мерах локальной ароматичности, которую приписывают от-
дельным бензольным кольцам структуры. Модифицируется индекс циклической ароматичности по методу 
Cioslowski и сотр. (2007), где теперь учитываются остаточные заряды и эффекты электронного распарива-
ния. Прежнее наше квазикорреляционное приближенние сильной связи (QCTB) служит здесь в качестве 
подходящей модели, которая весьма простым образом включает эффекты -электронных корреляций. 
Последние могут критично влиять на поведение больших и даже малых сопряженных молекул с нетриви-
альной топологией. Представлены применения моделей Хюккеля и QCTB для локальной ароматичности в 
разнообразных структурных классах полициклических ароматических углеводородов (ПAУ), наночастиц 
графена и т.п. Аналитически исследована мера ароматичности в сопряженных моноциклах CNHN (ней-
тральных и заряженных). Кроме того, в тех же схемах изучено несколько ПAУ-структур (олигоцены, пирен, 
перилен и пр.) в их заряженных состояниях и проведено сравнение со структурами хиноидного типа, как в 
п-дифенохинодиметане. Показано, что в отличие от обычных ПАУ, хинодиметаны увеличивают ароматич-
ность в дикатионной (дианионной) форме. Изучая нанографены, мы фиксируем понижение их локальной 
ароматичности по мере перехода к центру структуры, что вовсе не отвечает результатам NICS-метода 
(независимый от ядра химический сдвиг), впрочем, метода довольно спорного. В работе делается особен-
ный акцент на оценке локальной ароматичности в сильно коррелированных -электронных системах. Ти-
пичные некекулевские углеводороды (например, триангуленовый радикал и полирадикалы) также изучены 
с помощью QCTB, где с легкостью обходятся характерные трудности, обусловленные наличием большого 
числа несвязывающих МО. 

Ключевые слова: меры ароматичности, полициклические ароматические углеводороды, нанографены, 
хюккелевские MO, системы с открытой оболочкой, полирадикалы, квазикорреляционное приближение 
сильной связи. 
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A.В. Лузанов. Циклічна ароматичність за методом Хюккеля та квазікореляційним хюккелеподібним на-
ближенням. 

* НТК «Інститут монокристалів» НАН України, проспект Науки, 60, Харків, 61000, Україна 

У статті розглядається кількісне міровизначення ароматичності -електронних структур невибагливими 
методами МО. Акцентується на мірах локальної ароматичності, що пов’язуються з окремими бензольними 
кільцями. Модифіковано індекс циклічної ароматичності Cioslowski та співроб. (2007), в якому наразі вра-
ховано наявні остаточні заряди та ефекти електронного розпарювання. Попереднє наше квазікореляційне 
наближення сильного зв’язку (QCTB) слугую тут за придатну модель, котра у вельми простий спосіб вра-
ховує ефекти -електронних кореляцій. Останні спроможні критично впливати на поведінку великих та 
навіть малих супряжених структур з нетривіальною топологією. Зроблено чисельні застосування моделей 
Хюккеля та QCTB до локальної ароматичності у різноманітних структурних класах (поліцикличних арома-
тичних углеводнів (ПАУ), графенових наночастинок тощо). Аналітично досліджено ароматичну міру в суп-
ряжених моноциклах CNHN (нейтральних та заряджених). Крім цього, за тими же схемами розглянуто 
декілька ПАУ-структур (олігоцени, пірен, перилен тощо.) у заряджених станах; їх порівняно із структурами 
за хіноїдним типом, як у п-дифенохінодиметані. Продемонстровано, що на відміну від звичайних ПАУ, хі-
нодиметани збільшують ароматичність у дикатіонній (дианіонній) формі. Досліджуючи нанографени, ми 
знаходимо зниження їх локальної ароматичності, коли просуваємось до центру структури, що зовсім не 
відповідає результатам за NICS-методом (незалежний від ядер хімічний зсув), який взагалі є доволі спір-
ним. В роботі робиться особливий акцент на оцінювання локальної ароматичності в сильно корельованих 
-елетронних системах. Типові некекулівські вуглеводні (наприклад, тріангуленовий радикал та поліради-
кали) також вивчено за допомогою QCTB, який з легкістю оминає характерні ускладнення, котрі пов’язано 
із значною кількістю незв’язуючих МО. 

Ключові слова: міри ароматичності, поліцикличні ароматичні вуглеводні, нанографени, хюккелівські 
MO, системи з відкритою оболонкою, полірадикали, квазікореляційне наближення сильного зв’язку. 
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