Biophysical investigations of molecular mechanisms of chemotherapeutic agents action. 1. Chemotherapeutic and antiviral agents (Review)

  • M. V. Kosevich B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine http://orcid.org/0000-0003-0257-4588
  • O. A. Ryazanova B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine https://orcid.org/0000-0002-8277-8611
  • V. A. Pashynska B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine https://orcid.org/0000-0001-9786-6828
Keywords: intermolecular interactions, chemotherapeutic agents, anticancer drugs, nucleic acids, mass spectrometry, molecular spectroscopy

Abstract

Background: Determination of molecular mechanisms of action of drugs forms a scientific basis for the directed search of efficient medications. Assumed pathways of interactions of chemotherapeutic drugs which affect infectious agents and malignant neoplasm with their potential molecular targets require direct evidences at the molecular level. Such evidences can be obtained by means of molecular biophysics which possesses an arsenal of new powerful physical techniques for studying the intermolecular interactions of biomolecules and pharmaceutical agents.

Objectives: The aim of this review is the generalization of the results of long standing investigations on the molecular mechanisms of action of chemotherapeutic agents performed in the biophysical departments of B. Verkin Institute for Low Temperature Physics and Engineering (ILTPE) of the NAS of Ukraine. The first part of the review is devoted to anticancer and antiviral agents targeted presumably at nucleic acids.

Materials and methods: Mass spectrometric studies of molecules of thermally unstable drugs and their complexes with biomolecules have been advanced significantly due to the development of soft ionization/desorption techniques; the researchers of ILTPE have made noticeable contribution to this field. The methods of molecular spectroscopy and computer modeling by means of quantum chemistry were applied in the combined investigations.

Results: The objects of study were the systems composed of chemotherapeutic drugs – thiophosphamide, phenazine derivatives and phenazine-modified antigene/antisense oligonucleotides, quaternary compounds, tilorone – and their molecular targets – DNA, oligo- and polynucleotides and nucleic acids components. The mechanisms of action of these drugs established at the model molecular level consisted in the specific and nonspecific noncovalent or covalent interactions of the drugs’ molecules with nucleic acids and their components and in the formation of stable drug-target complexes.

Conclusions: The experience of investigations conducted during several decades at the ILTPE has demonstrated the efficiency of the application of the methods and approaches of molecular biophysics to establishing of molecular mechanisms of drugs action. The basic results obtained are of practical importance for the further development of new efficient pharmaceuticals.

Downloads

Download data is not yet available.

Author Biographies

M. V. Kosevich, B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine

47 Nauky Avenue., Kharkiv, 61103, Ukraine

O. A. Ryazanova, B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine

47 Nauky Avenue., Kharkiv, 61103, Ukraine

V. A. Pashynska, B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine

47 Nauky Avenue., Kharkiv, 61103, Ukraine

References

Mashkovskii, M. D. (2011) Lekarstvennye sredstva: posobie dlia vrachei [Medicines: A Handbook for Physicians]. Moskva: Novaia volna. (in Russian)

Gnatchenko, S. L. (Ed). (2010). Fiziko-tehnicheskij institut nizkih temperatur im. B.I. Verkina NAN Ukrainy. 50 let [Institute for Low Temperature Physics and Engineering of the NAS of Ukraine. 50 years]. Kiev: Naukova dumka. (in Russian)

Verkin, B. I., Yanson, I. K., Sukhodub, L. F., Teplitsky, A. B. (1985). Vsaimodejstviia biomolekul. Novye eksperimental’nye podhody i metody. [Interactions of biomolecules. New experimental approaches and methods]. Kiev: Naukova dumka. (in Russian)

Kosevich, M. V., Shelkovsky, V. S. (2000) Progress of mass spectrometric technique for biomedical experiments as an example of influence of social demands on the advancement of science. Visnyk Kharkivskoho universytetu No 497. Biofizychnyi visnyk [Biophysical Bulletin], (7), 84–99. (in Russian)

Vékey, K. (2012). Applications to small biomolecules and developments in Central and Eastern Europe. In K. R. Jennings (Ed.), A History of European Mass Spectrometry (pp. 195 212). Chichester: IM Publications.

Siuzdak, G. (2003). The expanding role of mass spectrometry in biotechnology. San Diego: MCC Press.

Nobelprize.org. Nobel Media AB (2002). The 2002 Nobel Prize in Chemistry Advanced Information. Retrieved from https://www.nobelprize.org/prizes/chemistry/2002/advanced-information/

Pokrovskiy V. A. (2012). Desorption mass spectrometry: physics, physical chemistry, surface chemistry. Visnyk Natsionalnoi Akademii Nauk Ukrainy [Visnyk of the National Academy of Sciences of Ukraine], (12), 28 43. (in Ukranian)

Sukhodub, L. F. (1977). Mass-spektrometricheskoe issledovanie mezhmolekuliarnyh vzaimodeistvii azotistyh osnovanii nukleinovyh kislot v vacuume [Mass spectrometric study of intermolecular interactions of nitrogen bases in vacuum] (PhD dissertation). Retrieved from https://search.rsl.ru/ru/record/01009515558 (OD Дк 77-1/765). (in Russian)

Sukhodub, L. F. (1995). Soft-ionization mass spectrometry study of deoxynucleoside bioclusters and deoxynucleoside-antitumor medicinal preparation clusters // Mass Spectrometry Reviews, 14(4 5), 235 254. doi:10.1002/mas.1280140402

Kosevich, M. V. (1989). Molekuliarnyi analiz lekarstvennyh preparatov i produktov ih vzaimodeistviia s DNK i ee komponentami po dannym miagkoionizatcionnoi mass-spektrometrii [Molecular analysis of medicines and products of their interaction with DNA and its components according to soft ionization mass spectrometry]. (PhD dissertation). Retrieved from https://search.rsl.ru/ru/record/01008471022 (OD 61 89-1/1884). (in Russian)

Kosevich, M. V., Shelkovsky, V. S., Pashynska, V. A. (1993). Novyi tip emitterov na osnive poverkhnosti izloma grafita dlia mass-spektrometrii s polevoi ionizatciei i polevoi desorbtciei [New type of emitters based on graphite fracture surface for mass spectrometry with field ionization and field desorption]. Doklady AN Ukrainy [Reports of the National Academy of Sciences of Ukraine], (9), 75 79. (in Russian)

Kosevich, M.V. (2001). Physical mechanisms of secondary emission of clusters from condensed matter at low temperatures. (Doctor of Sciences dissertation). Retrieved from Vernadsky National Library of Ukraine, Kiev. (ДС71291). (in Russian)

Kosevich, M. V. (1998) Low temperature secondary emission mass spectrometry. Cryobiological applications. European Mass Spectrometry, 4(4), 251 264. doi:10.1255/ejms.218

Blagoi, Yu. P., Sheina, G. G., Ivanov, A. Yu., Radchenko, E. D., Kosevich, M. V., Shelkovsky, V. S., Boryak, O. A., Rubin, Yu. V. (1999). Low-temperature experimental studies in molecular biophysics: a review. Low Temperature Physics, 25(10), 747 760. doi:10.1063/1.593810

Blagoi, Yu. P., Galkin, V. L., Gladchenko, G. O., Kornilova, S.V., Sorokin, V. A., Shkorbatov, A. G. (1991). Metallocompleksy nukleinovyh kislot v rastvorah [Metal complexes of nucleic acids in solutions]. Kiev: Naukova Dumka. 269 p. (in Russian)

National Center for Biotechnology Information, U.S. National Library of Medicine (2018). PubChem Compound Database. Retrieved from https://pubchem.ncbi.nlm.nih.gov

Pyatigorskaya, T. L., Zhilkova, O. Y., Shelkovsky, V. S., Kosevich, M. V., Grizodub, A. I., Sukhodub, L. F. (1985). Izuchenie produktov prevrashhenija tiofosfamida v vodnyh rastvorah metodami tonkoslojnoj hromatografii i mass-spektrometrii [Study of thiophosphamide transformation products in water solutions by means of thin layer chromatography and mass spectrometry]. Khimiko-Farmatsevticheskii Zhurnal [Pharmaceutical Chemistry Journal], 19(10), 1235- 241. (in Russian)

Pyatigorskaya, T. L., Zhilkova, O. Y., Shelkovsky, V. S., Arkhangelova, N. M., Grizodub, A. I., Sukhodub, L. F. (1987). Hydrolysis of 1, 1’, 1″-phosphinothioylidinetrisaziridine (thiotepa) in aqueous solution. Biological Mass Spectrometry, 14(4), 143 148. doi:10.1002/bms.1200140402

Kosevich, M. V., Shelkovsky, V. S., Boryak, O. A., Stepanov, O. I. (1991). Fast atom bombardment mass spectra of thiotepa. Organic Mass Spectrometry, 26(6), 619 620. doi:10.1002/oms.1210260615

Kosevich, M. V., Shelkovsky, V. S., Stepanyan, S. G. (1996). Dependence of the biological activity and mass spectrometric pattern on the structure peculiarities of the molecule of alkylating drug thiotepa. Biophysical Chemistry, 57(2-3), 123 131. doi:10.1016/0301-4622(95)00053-6

Kosevich, M. V., Shelkovsky, V. S., Stepanyan, S. G., Boryak, O. A., Tretiak, S. M., Telezhenko, Yu. V. (1991). Vozmozhnosti izucheniia fiziko-khimicheskih kharakteristik veshestva s ispolzovaniem mass-spektrometrii s razlichnymi vidami ionizacii na primere preparata TioTEF. [Possibilities of study of physico-chemical characteristics of substances by means of mass spectrometry with different ionization modes exemplified by ThioTEPA drug]. Preprint of Institute for Low Temperature Physics, Kharkov. (3-91). 1-46. (in Russian)

Kosevich, M. V., Shelkovsky, V. S. (1990). On the formation of doubly charged fragment and cluster ions of oxygen- and sulfur-containing substances in field ionization and field desorption mass spectrometry. Rapid Communications in Mass Spectrometry, 4(12), 493 494. doi:10.1002/rcm.1290041202

Sukhodub, L. F., Kosevich, M. V., Boldeskul, I. E., Protsenko, L. D. (1989). Mass-spektrometricheskoe issledovanie arildijetilentriamidov fosfornoj kisloty [Mass spectrometric study of aryldiethylenetriamides of phosphoric acid]. Ukrainskii Khimicheskii Zhurnal, 55(6), 642 645. (in Russian)

Sukhodub, L. F., Kosevich, M. V., Boldeskul, I. E., Protsenko, L. D. (1989). Acildijetilentriamidy fosfornoj kisloty: mass-spektrometricheskoe issledovanie [Acyldiethylenetriamides of phosphoric acid: mass-spectrometric investigation]. Ukrainskii Khimicheskii Zhurnal, 55(7), 752 757. (in Russian)

Powers, R., Siegel, M. M. (2006). Applications of nuclear magnetic resonance and mass spectrometry to anticancer drug discovery. In A. A. Adjei, J. K. Buolamwini (Eds.), Novel Anticancer Agents. Strategies for Discovery and Clinical Testing (pp. 107 190). Amsterdam: Academic Press. doi:10.1016/B978-012088561-9/50006-5

Ryazanova, O.A., Voloshin, I. M., Makitruk, V. L., Zozulya, V. N., Karachevtsev, V.A. (2007). pH – induced changes in electronic absorption and fluorescence spectra of phenazine derivatives. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 66(4 5), 849 859. doi:10.1016/j.saa.2006.04.027

Ryazanova, O .A., Zozulya, V. N., Voloshin, I. M., Karachevtsev, V. A., Makitruk, V L., Stepanian, S. G. (2004). Absorption and fluorescence spectral studies of imidazophenazine derivatives. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60(8 9), 2005 2011. doi:10.1016/j.saa.2003.10.020

Ryazanova, О. А., Zozulya, V. N., Voloshin, I. М., Karachevtsev, V. А., Makitruk, V. L. (2003). Spektralno-fluorestsentnyie svoystva potentsialnyh fluorestsentnyh zondov molekulyarnoy gibridizatsii nukleinovyh kislot na osnove proizvodnyh fenazina. Visnyk Kharkivskoho universytetu No 593. Biofizychnyi visnyk [Biophysical Bulletin], (12), 49 52. (in Russian)

Zarudnev, E. S., Karachevtsev, V. A., Plokhotnichenko, A. M, Stepan’yan, S. G, Adamovich, L. (2009). IR Spectroscopy and ab initio calculations of imidazophenazine and its derivatives in a low-temperature argon matrix. Low Temperature Physics, 35(6), 491 502. doi:10.1063/1.3151996

Kosevich, M. V., Boryak, O. A., Orlov, V. V., Shelkovsky, V. S., Chagovets, V. V., Stepanian, S. G., Karachevtsev, V. A., Adamowisz, L. (2006). Evaluation of the reduction of imidazophenazine dye derivatives under fast atom bombardment mass spectrometric conditions. Journal of Mass Spectrometry, 41(1), 113 123. doi:10.1002/jms.974

Kosevich, M. V., Chagovets, V. V., Shmigol, I. V., Snegir, S. V., Boryak, O. A., Orlov, V. V., Shelkovsky, V. S., Pokrovskiy, V. A., Gomory, A. (2008). Sensitivity of redox reactions of dyes to variations of conditions created in mass spectrometric experiments. Journal of Mass Spectrometry, 43(10), 1402–1412. doi:10.1002/jms.1421

Kosevich, M. V., Boryak, O. A., Chagovets, V. V., Shelkovsky, V. S., Pokrovskiy, V. A. (2016). Chapter Seven: Interactions of biologically active redox-sensitive dyes with nanomaterials: mass spectrometric diagnostics. In V. A. Karachevtsev (Ed.). Nanobiophysics: Fundamentals and Applications. (pp. 193–233). Singapore: Pan Stanford Publishing.

Shelkovskii, V. S., Kosevich, M. V., Chagovets, V. V., Boryak, O. A., Orlov, V. V., Snegir’, S. V., Shmigol’, I. V., Pokrovskii, V. A. (2009). About the plausible contribution of field ionization in the mechanisms of the formation of dyes of ions under conditions of laser desorption/ionization from a nanostructured graphite surface. Mass-Spectrometria, 6(4), 271-279.

Sukhodub, L. F. (1991). The possibilities of the soft-ionization mass-spectrometry in the molecular-biological studies. Biopolymers & Cell, 7(6), 15-32. (in Russian) doi:10.7124/bc.0002FC

Sukhodub, L. F., Shelkovsky, V. S., Kosevich, M. V., Pyatigorskaya, T. L., Zhilkova, O. Yu. (1985). Mass spectrometric study of thiophosphamide interaction with nucleic acid bases. Doklady Acadmii Nauk SSSR, 283(10), 714 716. (in Russian)

Sukhodub, L. F., Shelkovsky, V. S., Kosevich, M. V., Pyatigorskaya, T. L., Zhilkova, O. Yu. (1986). Nucleic acid base complexes with thiotepa as revealed by field ionization mass spectrometry. Biomedical and Environmental Mass Spectrometry, 13(4), 167 170. doi:10.1002/bms.1200130403

Sukhodub, L. F., Kosevich, M. V., Pyatigorskaya, T. L., Zhilkova, O. Yu., Shelkovsky, V. S., Boryak, O. A. (1987). Nablyudenie produktov alkilirovaniya osnovanij nukleinovyh kislot metodom polevoj mass-spektrometrii [Observation of alkylation products of nucleic acids bases by means of field mass spectrometry]. Aktual’nyePproblemy Eksperimental’noj Khimioterapii Opuholej, (2), 94-96. (in Russian)

Sukhodub, L. F., Kosevich, M. V., Shelkovsky, V. S., Pyatigorskaya, T. L., Zhilkova, O. Yu. (1990). Direct observation of adducts between nitrogen bases and thio-TEPA using soft ionization mass spectrometry. Biofizika, 35(4), 549 551. (in Russian)

Sukhodub, L. F., Andrievskiy, G. V., Pyatigorskaya, T. L., Kosevich, M. V., Zhilkova, O. Yu. (1988). Use of the method of fast atom bombardment mass spectrometry for identification of products of the interaction of thiophosphamide with DNA. Bioorganicheskaya Khimiya [Russian Journal of Bioorganic Chemistry], 14(12), 1698 1699. (in Russian)

Pyatigorskaya, T. L., Zhilkova, O. Yu., Murav’eva, L. M., Sukhodub, L. F. (1986). DNA interaction with the antitumor agent thiophosphamide. Molekulyarnaya Biologiya, 20(2), 423-429. (in Russian)

Serebryanyj, A. M., Andrievskiy, G. V., Bekker, A. R., Sibeldina, L A., Povolotskaya, M. I. (1986). Directions of deoxyguanosine and deoxyguanylic acid alkylation by thio-TEPA. Bioorganicheskaya Khimiya [Russian Journal of Bioorganic Chemistry], 12(4), 499-506. (in Russian)

Serebryanyi, A. M., Andrievskii, G. V., Bekker, A. R., Sibeldina, L. A., Sharova, O. L. (1987). The structure of the products of nucleotides and DNA modification by ethyleneimine and thio-TEPA. Bioorganicheskaya Khimiya [Russian Journal of Bioorganic Chemistry], 13(6), 786 792. (in Russian) http://rjbc.ru/arc/13/6/0786-0792.pdf

Andrievskii, G. V. (1988). Modifikaciia nukleotidov i DNK etileniminom i tiotefom [Modification of DNA nucleotides by ethyleneimine and thiotepa]. (PhD dissertation). Retrieved from https://search.rsl.ru/ru/record/01008273270 (OD 61 89-2/440). (in Russian)

Sukhodub, L. F., Chivanov, V. D., Grebenik, L. I., Bondarenko, P. V., Zubarev, R. A., Knysh, A. N. (1991). Observation of thiotepa-deoxyguanosine-5'-phosphate modification products by mass spectrometry with isolation of Californium-252 fragments. Bioorganicheskaya Khimiya [Russian Journal of Bioorganic Chemistry], 17(7), 999 1001. (in Russian)

Sukhodub, L. F., Chivanov, V. D., Grebenik, L. I., Bondarenko, P. V., Zubarev, R. A., Knysh, A. N. (1992). Study of the interaction of triethylenethiophosphamide with nucleotides by mass spectrometry with ionization by fission fragments of californium-252. Ukrainskii Biokhimicheskii Zhurnal [The Ukrainian Biochemical Journal], 64(1), 41 49. (in Russian)

Sukhodub, L. F., Grebenik, L. I.,Chivanov, V. D. (1994). Use of time-of-flight mass spectrometry with ionization division fragments of californium-252 for studying the mechanisms of action of drugs on DNA and its components. Biofizika, 39(2), 289 293. (in Russian)

Sukhodub, L. F., Grebenik, L. I., Chivanov, V. D. (1994). Study of anticancer drug interaction with DMA by means of particle-induced desorption mass spectrometry: Prospidine and deoxyguanosine-5'-monophosphate. Rapid Communications in Mass Spectrometry, 8(2), 195 198. doi:10.1002/rcm.1290080214

Grebenik, L. I. (1996). Vyvchennia mizhmolekuliarnykh vzaiemodii protypukhlynnykh preparativ (tiotefa, prospidina, doksorubitsyna, farmorubitsyna) z deiakymy strukturnymy komponentamy nukleinovykh kyslot ta bilkiv metodom mas-spektrometrii [Study of intermolecular interactions of anticancer drugs (thioTEPA, prospidine, doxorubicine, farmorobicine) with some structural components of nucleic acids and proteins by means of mass spectrometry]. (PhD dissertation). Retrieved from https://dlib.rsl.ru/viewer/01000775262#?page=1 (in Ukrainian)

Kalinkevich, A. N., Pilipenko, V. V., Kalinichenko, T. G., Sukhodub, L. F. (2002). Mass spectrometry (252Cf-PDMS) study of aminoglycoside antibiotics interaction with nucleic acid components. Biopolymers & Cell, 18(2), 114 116. (in Russian) doi:10.7124/bc.0005F1

Nikolaienko T. Yu., Bulavin L. A., Sukhodub L. F.(2914). The complexation of the anticancer drug ThioTEPA with methylated DNA base guanine: combined ab initio and QTAIM investigation. Molecular Informatics, 33(2), 104 114. doi:10.1002/minf.201300059

Samtsevych, A. I., Bulavin, L. A., Sukhodub, L. F., Nikolaienko, T. Yu. (2014). Interaction of DNA nucleotide bases with anticancer drug ThioTEPA: molecular docking and quantum-mechanical analysis. The Ukrainian Biochemical Journal, 86(2), 50 59. (in Russian) doi:10.15407/ubj86.02.050

Zozulya, V., Blagoi, Yu., Löber, G., Voloshin, I., Winter, S., Makitruk, V., Shalamay, A. (1997). Fluorescence and binding properties of phenazine derivatives in complexes with polynucleotides of various base compositions and secondary structures. Biophysical Chemistry, 65(1), 55 63. doi:10.1016/S0301-4622(96)02247-8

Blagoi, Yu. P., Zozulya, V. N., Voloshin, I. M., Makitruk, V. L., Shalamay, A. S., Shcherbakova, A. S. (1997). Investigation of phenazine derivatives interaction with DNA by polarized fluorescence method. Biopolyers &Cell, 13(1), 22 29. (in Russian) doi:10.7124/bc.000462

Zozulya, V., Shcherbakova, A., Dubey, I. (2000). Calculating helix-to-hoil transitions of duplexes formed by phenazine-conjugated oligonucleotide, using fluorescence melting data. Journal of Fluorescence, 10(1), 49-53. doi:10.1023/A:1009487613659

Zozulya, V., Blagoi, Yu., Dubey, I., Fedoryak, D., Makitruk, V., Ryazanova, O., Shcherbakova, A. (2003). Anchorage of an oligonucleotide hybridization by a tethered phenazine nucleoside analogue. Biopolymers (Biospectroscopy), 72(4), 264 273. doi:10.1002/bip.10403

Ryazanova, О. А., Dubey, I. Ya., Zozulya, V. N. (2008). Investigation of the effect of covalently attached phenazine dye on helix-to-coil transition in mixed poly(rA)-(dT)14 system. Biophysical Bulletin, 20(1), 17-23. (in Russian)

Ryazanova, O. A., Dubey, L. V., Dubey I. Ya., Zozulya V. N. (2012). Spectroscopic study on the effect of imidazophenazine tethered to 5′-end of pentadecathymidilate on stability of poly(dA)•(dT)15 duplex. Journal of Fluorescence, 22(6), 1431 1439. doi:10.1007/s10895-012-1080-y

Dubey, L., Ryazanova, O., Zozulya, V., Fedoryak, D., Dybey, I. (2011). Postsynthetic modification of oligonucleotides with imidazophenazine dye and its effect on duplex stability. Nucleosides, Nucleotides and Nucleic Acids, 30(7 8), 585 596. doi:10.1080/15257770.2011.598489.

Dubey, L. V., Ilchenko, M. M., Zozulya, V. N., Ryazanova, O. A., Pogrebnoy, P. V., Dubey, I. Ya. (2011). Synthesis, structure and antiproliferative activity of cationic porphyrin - imidazophenazine conjugate. International Review of Biophysical Chemistry, 2(4), 147 152.

Zozulya, V. N., Ryazanova, O. A., Voloshin, I. M., Dubey, L. V., Dubey I. Ya. (2011). Spectroscopic studies on binding of porphyrin-phenazine conjugate to intramolecular G-quadruplex formed by 22-mer oligonucleotide. International Review of Biophysical Chemistry, 2(4), 112 119.

Ryazanova, O., Zozulya, V., Voloshin, I., Dubey, L., Dubey, I., Karachevtsev, V. (2015). Spectroscopic studies on binding of porphyrin-phenazine conjugate to four-stranded poly(G). Journal of Fluorescence, 25(4), 1013 1021. doi:10.1007/s10895-015-1585-2

Ryazanova, O., Zozulya, V., Voloshin, I., Dubey, L., Dubey, I., Karachevtsev, V. (2015). Binding of metallated porphyrin–imidazophenazine conjugate to tetramolecular quadruplex formed by poly(G): a spectroscopic investigation. Journal of Fluorescence, 25(6), 1897 1904. doi:10.1007/s10895-015-1682-2

Kukhar', V. P., Sorokin V. A., Blagoĭ, Yu. P, Sukhodub, L. F. (1989). Observation of AT-nucleotide specificity during the interaction of dexamethoxin with native DNA. Doklady Akademii Nauk SSSR, 305(4), 997 999. (in Russian) https://www.ncbi.nlm.nih.gov/labs/journals/dokl-akad-nauk-sssr/

Sorokin, V. A., Blagoĭ, Iu. P., Valeev, V. A., Gladchenko, G. O., Sukhodub, L. F., Volianskiĭ, Iu. L. (1990). The study of complex-formation of DNA with the antimicrobial drug decamethoxine. Molekuliarnaia Biologiia, 24(1), 214 219. (in Russian)

Sorokin, V. A., Valeev, V. A., Gladchenko, G. O., Blagoi, Yu. P., Sukhodub, L. F. (1994). Interaction between antimicrobic ethonium drug and natural DNA. Biopolymers & Cell, 10(1), 82 89. (in Russian) doi:10.7124/bc.000396

Sorokin, V. A., Valeev, V. A., Gladchenko, G. O., Blagoi, Yu. P., Ryazanova, O. A.., Sukhodub, L. F. (1994). Ethonium interaction with single-chain homopolynucleotides. Biopolymers & Cell, 10(2), 61 68. (in Russian) doi:10.7124/bc.0003A6

Rosu F., De Pauw E., Gabelica V.(2008). Electrospray mass spectrometry to study drug-nucleic acids interactions. Biochimie, 90(7), 1074 1087. doi:10.1016/j.biochi.2008.01.005

Gabelica, V. (Ed.). Nucleic acids in the gas phase. Berlin: Springer-Ferlag. doi:10.1007/978-3-642-54842-0

Pashynska V. A., Zholobak N. M., Kosevich M. V., Gomory A., Holubiev P. K., Marynin A. I. (2018). Study of intermolecular interactions of antiviral agent tilorone with RNA and nucleosides. Biophysical Bulletin, 39(1), 15 26. doi:10.26565/2075-3810-2018-39-02

Published
2019-06-06
Cited
How to Cite
Kosevich, M. V., Ryazanova, O. A., & Pashynska, V. A. (2019). Biophysical investigations of molecular mechanisms of chemotherapeutic agents action. 1. Chemotherapeutic and antiviral agents (Review). Biophysical Bulletin, (42), 8-27. https://doi.org/10.26565/2075-3810-2019-42-02
Section
Molecular biophysics