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Актуальність: Віднайдення ефективних лікувальних засобів проти небезпечної хвороби, 

спричиненої SARS-CoV-2, є важливим напрямом біомедичних досліджень. Методи молекулярного 

докінгу та молекулярної динаміки є ключовими інструментами сучасної фармацевтичної науки, 

забезпечують швидкий пошук і оптимізацію противірусних сполук, дозволяють прогнозувати їхню 

ефективність та адаптувати терапію до нових штамів SARS-CoV-2. Фулерен C60 привертає значну 

увагу як перспективний наноматеріал у боротьбі з SARS-CoV-2 завдяки своїй здатності утворювати 

стабільні комплекси з ключовими вірусними білками, такими як головна протеаза (3CLpro) та РНК-

залежна РНК-полімераза (RdRp). Молекулярні моделювання та біофізичні дослідження показали, 

що C60 може проникати крізь ліпідну оболонку вірусу та блокувати функціональну активність його 

білків, що відкриває можливості для створення нових противірусних препаратів. Враховуючи 

постійні мутації SARS-CoV-2 та обмеженість існуючих терапевтичних засобів, дослідження 

фулерену C60 як потенційного інгібітора є актуальним напрямом нанотехнології для розробки 

інноваційних стратегій лікування COVID-19. 

Мета роботи полягала в оцінці in silico здатності С60 фулерену взаємодіяти з білковими мішенями 

3CLpro (3-Chymotrypsin-Like protease) і RdRp (RNA-dependent RNA polymerase) коронавірусу 

SARS-CoV-2 і, таким чином, цілеспрямовано їх блокувати, пригнічуючи функціональну активність 

SARS-CoV-2.  

Методи: Структурні дані білків 3CLpro та RdRp коронавірусу SARS-CoV-2 було отримано з Protein 

Data Bank, а геометрію С₆₀ фулерену згенеровано за допомогою онлайн-сервера SwissParam. 

Взаємодії між С₆₀ фулереном і досліджуваними білками моделювали за допомогою алгоритму 

системного молекулярного докінгу (sdock+). Потенційні сайти зв’язування визначали за допомогою 

програмного пакета Caver. Молекулярно-динамічні розрахунки проводили у програмному 
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середовищі Gromacs 2020. Енергетичну мінімізацію потенційних комплексів «С₆₀ фулерен – білок» 

виконували з використанням пакета g_mmpbsa. 

Результати: Встановлено можливий механізм зв’язування С₆₀ фулерену з білковими мішенями 

3CLpro та RdRp коронавірусу SARS-CoV-2. Дані молекулярного докінгу та молекулярної динаміки 

демонструють, що С₆₀ фулерен формує стабільні комплекси з цими білками, що може призводити 

до пригнічення їх функціональної активності. 

Висновки: Показано, що С₆₀ фулерен здатний утворювати стабільні комплекси з білками 3CLpro і 

RdRp SARS-CoV-2, що потенційно знижує їхню активність і, відповідно, може впливати на загальну 

активність коронавірусу. 

КЛЮЧОВІ СЛОВА: С60 фулерен; коронавірус SARS-CoV-2; 3CLpro і RdRp білки; молекулярний 

докінг; молекулярна динаміка. 

 

Поширення емерджентного коронавірусу SARS-CoV-2 почалося з поодиноких 

випадків, зафіксованих наприкінці 2019 року, і згодом набуло швидкого 

розповсюдження у світі. Це змусило ВООЗ оголосити глобальну пандемію COVID-19. 

Первинні симптоми інфекції включають лихоманку або озноб, кашель, задишку, втому, 

біль у м'язах або тілі, головний біль, втрату смаку або нюху, біль у горлі, нежить тощо 

[1]. Тяжкість перебігу цієї інфекції залежить від багатьох факторів: характеристик вірусу 

(приналежності до певного субтипу, варіанту), наявності специфічних клітинних 

рецепторів, стану організму людини (його імунологічних складових, включаючи 

фактори клітинної імунологічної відповіді), супутніх та хронічних захворювань, вікових  

параметрів, статі і т.і. 

Як і будь-який вірус, SARS-CoV-2 змінюється з часом і деякі зміни впливають на 

його властивості, зокрема на здатність легко поширюватися та викликати тяжкість 

перебігу захворювання, на резистентність до терапевтичних препаратів, зниження 

чутливості діагностичних тестів та ефективність вакцинації тощо [2]. SARS-CoV-2 

зазнав кількох мутацій з моменту своєї появи, що призвели до змін варіантів вірусу: 

Альфа-, Бета-, Гамма-, Дельта-, Омікрон-, Арктур-варіант і т.д. [3, 4]. На сьогоднішній 

день SARS-CoV-2 спричинив у світі понад 775 мільйонів підтверджених випадків 

захворювання, у тому числі понад 7 мільйонів смертей (WHO Coronavirus (COVID-19) 

Dashboard, 2025). Можна впевнено казати, що глобальна активність SARS-CoV-2 зростає 

і вакцинація наразі залишається ключовим терапевтичним заходом для запобігання 

важкому захворюванню і смертності від COVID-19. 

SARS-CoV-2, збудник що викликав пандемію COVID-19, є членом родини 

Coronaviridae, геном якого представляє лінійну позитивну одноланцюгову РНК розміром 

22-36 тис. нуклеотидів з 5′-кінцевою структурою і 3′-поліаденілірованим “хвостом” та  

типовою геномною організацією 5′-NCR-реплікази-S-E-M-N-NCR-3′. Цей вірус, 

представник підродини Orthocoronavirinae, має оболонкові плеоморфні або майже 

сферичні віріони діаметром 80-160 нм з шипо-подібними виступами на поверхні. 

Нуклеокапсид складається з нуклеокапсидного білка (N) і РНК, виглядає вільно 

намотаним, з невеликими спіральними одиницями, розподіленими по всій внутрішній 

поверхні віріону. Віріони складаються з трьох або чотирьох мембраноасоційованих 

білків: шипа (S), оболонки (E) і мембранного глікопротеїну (M). Ген реплікази 

складається з двох великих відкритих рамок зчитування (ORF), що перекриваються, 1a 

та 1b. Трансляція ORF1b програмується рибосомальним зсувом рамки і призводить до 

утворення поліпротеїнів pp1a та pp1ab, які у подальшому процесингуються 

протеїназами, що кодуються вірусом. Гени структурних білків S, E, M і N межують зі 

змінною кількістю аксесорних (допоміжних) білків ORFs [5].  

До складу вірусу SARS-CoV-2 входять критично важливі білки 3CLpro (NSP5), 3-

хімотрипсин-подібна протеаза, і RdRp (NSP12), РНК-залежна РНК-полімераза. 

Структура білка 3CLpro добре описана у роботі [6], де каталітична діада His41–Cys145 
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виступає як мішень для інгібіторів. Щодо структурної організації білка RdRp, то вона 

визначена за допомогою електронної кріомікроскопії [7]. Зазначимо, що білок 3CLpro 

відповідає за протеолітичне розщеплення вірусного поліпротеїну pp1a/pp1ab на 

функціональні неструктурні білки, серед яких — RdRp [8]. Білок RdRp є ключовим 

компонентом реплікаційного комплексу SARS-CoV-2, відповідального за синтез 

вірусної РНК [7]. Він функціонує у взаємодії з білками-кофакторами NSP7 та NSP8 [9].  

Сучасні нанобіотехнології активно застосовують наночастинки, що відкриває нові 

можливості для розв’язання низки клінічних завдань, включно з тими, які постали 

внаслідок пандемії COVID-19 [10, 11]. У цьому контексті особливу увагу привертає С60 

фулерен — нанорозмірна, майже сферична, біосумісна та біодоступна молекула [12-14], 

якій притаманна виражена противірусна активність «специфічного» типу [15, 16]. 

Відомо, що хімічно модифікований С60 здатний стерично блокувати ліпофільний канал 

протеаз вірусів HIV-1 та HIV-2 [17, 18], а також ефективно інгібувати полімеразу NS5B 

і протеазу NS3/4A вірусу гепатиту C [19]. Крім того, моделі in ovo [20] та in vitro [21] 

підтвердили протикоронавірусний потенціал водорозчинних похідних С60. 

Метою цієї роботи було in silico оцінити здатність С60 фулерену взаємодіяти з 

білковими мішенями 3CLpro і RdRp коронавірусу SARS-CoV-2 та, відповідно, визначити 

його можливість цілеспрямовано пригнічувати їхню функціональну активність і 

активність вірусу загалом. 

 

МАТЕРІАЛИ ТА МЕТОДИ 
Структури досліджуваних білків 3CLpro (PDB ID 6M2N) і RdRp (PDB ID 7BV2) 

коронавірусу SARS-CoV-2 були взяті з Protein Data Bank (PDB) [22]. Для генерування 

топології С60 фулерену використали онлайн сервер SwissParam [23]. 

Для дослідження взаємодії C60 фулерену (вихідна гнучка молекула) з тим чи іншим 

білком (вихідна жорстка молекула) використано вбудований у QXP (швидкий пошук 

(Quick eXPlore)) алгоритм системного молекулярного докінгу (sdock+) [24, 25]. 

Максимальна кількість кроків розрахунку складала 300, найоптимальніший «C60 

фулерен–білок» комплекс, виходячи з внутрішніх скоринг-функцій QXP (контактна 

поверхня та відстань між ключовими амінокислотами білка і C60 фулереном), відбирали 

для подальшого in silico тестування. 

Розрахунки методом молекулярної динаміки (МД) виконано у програмному пакеті 

Gromacs 2020 [26] з силовим полем Charmm36 [27].  

Потенційні ділянки для зв’язування C60 фулерену визначили за допомогою «cavity 

computational algorithm» у програмному пакеті Caver [28]. Спочатку всі молекули води 

та природні ліганди було видалено зі структури білків. Потім, перед поверхневим 

аналізом білків-мішеней та виявленням потенційних кишень зв’язування для С60 

фулерену, до білків додали усі відсутні атоми гідрогену та провели корекцію 

протонування амідів та бічних ланцюгів відповідно до клітинного рівня pH=7.0 

використавши функцію “ingh” наявну у Gromacs 2020. Після того як взаємодіючі системи 

було об’єднано, їх помістили у квадратний бокс і заповнили молекулами води (TIP3P). 

Мінімальна відстань між стінками боксу та найближчим атомом досліджуваної системи 

складала 9 Å, завдяки чому вона здатна вільно обертатися та взаємодіяти у цьому 

середовищі. Для імітації клітинного середовища туди додали іони Na+/Cl− (їх 

концентрація у боксі складала 0,15 M). Основний етап МД симуляції тривав 200 нс.  

Нарешті, мінімізацію енергії досліджуваних систем (потенційних комплексів «С60 

фулерен – білок») було проведено з використанням програмного пакету g_mmpbsa [29]. 
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РЕЗУЛЬТАТИ ТА ОБГОВОРЕННЯ 
Припускається, що пригнічення функціональної активності коронавірусу SARS-

CoV-2 може бути зумовлене молекулярним механізмом дії С60 фулеренів, який полягає 

у їхній здатності безпосередньо взаємодіяти з ключовими білками вірусу – зокрема, 

3CLpro та RdRp. Ці білки є критично важливими для перебігу життєвого циклу SARS-

CoV-2 [30], і їх блокування здатне порушувати вірусну реплікацію. Виходячи з такого 

припущення, було виконано моделювання потенційних комплексів між С60 фулереном 

та зазначеними білковими мішенями SARS-CoV-2, а також проведено оцінку їхньої 

стабільності у змодельованому клітинному середовищі. З цією метою застосовано 

методи молекулярного докінгу та молекулярної динаміки, що дозволило розрахувати, 

зокрема, енергетичний внесок окремих амінокислотних залишків у зв’язування кожного 

з білків із С60 фулереном. 

 

Дизайн комплексу «С60 фулерен–3CLpro білок» 

Результат молекулярного докінгу свідчить про здатність С60 фулерену інгібувати 

каталітичну діаду (Cys145 і His41) 3CLpro білку. С60 фулерен щільно заповнює кишеню 

зв’язування та блокує взаємодію каталітичної діади з будь-якими іншими 

молекулярними структурами, що узгоджується з передбаченням [6]. У цьому комплексі 

найбільш вираженими є стекінг взаємодія С60 фулерену з His 41, Cys 145, Met 49, Met 165 

та стерична взаємодія з Gln 189, Asn 142 (Рис. 1). 

  

 

 
Рис. 1. Кишеня зв’язування С60 фулерену (сірий колір) із 3CLpro білком (жовтий колір): А — результат 

молекулярного докінгу; Б — результат МД. 

 

Fig. 1. Binding pocket of C60 fullerene (gray color) with 3CLpro protein (yellow color): Left — molecular docking 

result; Right — MD result. 

 

За результатами МД отриманий комплекс «С60 фулерен–3CLpro білок» є стабільним 

упродовж усієї траєкторії динаміки: значення Rmsd (Root mean square deviation) для 

комплексу знаходиться в межах 3–4 Å. Загалом, під час МД симуляції фіксували такі 

ключові конформаційні зміни: у кишені зв’язування С60 фулерен зміщується на 3.1 Å та 

тягне за собою Asn 142 (його зміщення становить 4 Å). Внаслідок такого зміщення Gln 
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189 витискається зі свого нативного положення С60 фулереном на відстань 2.1 Å та 

утворює π-катіон взаємодію з Arg 40. Щодо взаємодії з каталітичною діадою (His 41 і 

Cys 145) та Phe 181, С60 фулерен утворює з ними стекінг взаємодію, як і після 

молекулярного докінгу. Але, що цікаво, С60 фулерен змінює нативну орієнтацію 

каталітичної діади, внаслідок чого її цілісність порушується, що, без сумніву, негативно 

впливатиме на функціонування 3CLpro білка.  

На наступному етапі було оцінено енергію зв’язування окремих амінокислот 3CLpro 

білка із С60 фулереном. Зокрема, енергія зв’язування для His 41 і Cys 145 є найбільшою і  

становить -2.6 і -2.2 кДж/моль, відповідно. Енергетика зв’язування С60 фулерену з 

амінокислотами 3CLpro білка є такою: для Met 49 — -5.1 кДж/моль, Met 165 — -7.1 

кДж/моль, Leu 50 — -4.3 кДж/моль, Gly 143 — -3.9 кДж/моль, Asp 187 — -3.7 кДж/моль, 

Gln 189 — -4.7 кДж/моль. 

На підставі результатів молекулярного докінгу та молекулярної динаміки можна 

зробити висновок, що фулерен С60 здатний формувати стійкий комплекс із протеїном 

3CLpro SARS-CoV-2, що потенційно може призводити до пригнічення його 

функціональної активності та блокування реплікації вірусу. 

 

Дизайн комплексу «С60 фулерен–RdRp білок» 

Результат молекулярного докінгу свідчить про здатність С60 фулерену інгібувати 

канал синтезу РНК RdRp білка: С60 фулерен щільно заповнює кишеню зв’язування і 

утворює такі взаємодії — π-стекінг з Arg 570, Lys 578, Tyr 690 та стеричні взаємодії з Asn 

497, Leu 577 (Рис. 2).  

 

 
 

 
Рис. 2. Кишеня зв’язування С60 фулерену (сірий колір) із RdRp білком (жовтий колір): А — результат 

молекулярного докінгу; Б — результат МД. 

 

Fig. 2. Binding pocket of C60 fullerene (gray color) with RdRp protein (yellow color): Left — molecular docking 

result; Right — MD result. 

 

Відповідно до результатів МД при зв’язуванні С60 фулерену з RdRp білком не 

відбувається значних конформаційних змін: амінокислоти Ile 590, Tyr 690, Leu 577, Gln 
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574 практично не змінюють свого положення у просторі (їх зміщення не перевищують 

0.3 Å), а зміщення Lys 578, Arg 570 не перевищують 1 Å. 
Енергетика зв’язування С60 фулерену з амінокислотами RdRp білка є такою: для Ile 

49 — -5.2 кДж/моль, Asn 497 — -2.2 кДж/моль, Leu 557 — -6.1 кДж/моль, Lys 578 — -5.1 

кДж/моль, Ala 581 — -4.1 кДж/моль, Ile 590 — -2.1 кДж/моль, Gly 591 — -2.3 кДж/моль.  
Таким чином, результати молекулярного докінгу та молекулярно-динамічного 

моделювання свідчать про те, що фулерен C60 може формувати стабільний комплекс із 

білком RdRp SARS-CoV-2, що потенційно здатне пригнічувати його каталізаторну 

активність шляхом блокування каналу синтезу вірусної РНК. 

 

ВИСНОВКИ 
Отримані результати in silico аналізу методами молекулярного докінгу та 

молекулярної динаміки свідчать, що фулерен C60 здатний формувати стабільні 

комплекси з білками 3CLpro та RdRp коронавірусу SARS-CoV-2, що призводить до 

пригнічення їхньої функціональної активності й, відповідно, реплікаційних процесів 

коронавірусу. Це підкреслює потенційні переваги водорозчинних, біосумісних і 

відносно безпечних у низьких дозах похідних фулеренів C60 як перспективних 

терапевтичних наноагентів проти SARS-CoV-2. 
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Background: The discovery of effective therapeutics against the dangerous disease caused by SARS-CoV-

2 is an important direction of biomedical research. Molecular docking and molecular dynamics methods 

are key tools of modern pharmaceutical science, providing rapid search and optimization of antiviral 

compounds, allowing to predict their effectiveness and adapt therapy to new strains of SARS-CoV-2. 

Fullerene C60 attracts considerable attention as a promising nanomaterial in the fight against SARS-CoV-2 

due to its ability to form stable complexes with key viral proteins, such as the main protease (3CLpro) and 

RNA-dependent RNA polymerase (RdRp). Molecular modeling and biophysical studies have shown that 

C60 can penetrate the lipid envelope of the virus and block the functional activity of its proteins, which 

opens up opportunities for the creation of new antiviral drugs. Given the constant mutations of SARS-CoV-

2 and the limitations of existing therapeutics, the study of C60 fullerene as a potential inhibitor is a relevant 

direction of nanotechnology for the development of innovative strategies for the treatment of COVID-19. 

Aim of the work was to assess in silico the ability of C60 fullerene to interact with the protein targets 

3CLpro (3-Chymotrypsin-Like protease) and RdRp (RNA-dependent RNA polymerase) of the SARS-

CoV-2 coronavirus and, thus, to specifically block them, inhibiting the functional activity of SARS-CoV-

2. 

Methods: Structural data of the 3CLpro and RdRp proteins of the SARS-CoV-2 coronavirus were obtained 

from the Protein Data Bank, and the geometry of C60 fullerene was generated using the online server 

SwissParam. Interactions between С60 fullerene and the studied proteins were modeled using the system 

molecular docking algorithm (sdock+). Potential binding sites were determined using the Caver software 

package. Molecular dynamics calculations were performed in the Gromacs 2020 software environment. 

Energy minimization of potential C60 fullerene — protein complexes was performed using the g_mmpbsa 

software. 

Results: Putative mechanism of binding of C60 fullerene to the protein targets 3CLpro and RdRp of the 

SARS-CoV-2 coronavirus was established. Molecular docking and molecular dynamics data demonstrate 

that C60 fullerene forms stable complexes with these proteins, which can lead to inhibition of their functional 

activity. 

Conclusions: It is shown that C60 fullerene is able to form stable complexes with the 3CLpro and RdRp 

proteins of SARS-CoV-2, which potentially reduces their activity and, accordingly, can affect the overall 

activity of the coronavirus. 
KEY WORDS: C60 fullerene; SARS-CoV-2 coronavirus; 3CLpro and RdRp proteins, molecular docking, molecular 

dynamics. 
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