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Background: The article describes a method for calculating the permittivity of organic molecules in
quantum mechanics using the well-studied Rhodamine 6G molecule as an example. The study of optical
properties of large organic molecules requires not only experimental data but also the use of calculations
obtained both analytically and numerically.

Objectives: Methods for calculating permittivity as phenomenological characteristics of a sample are to
be tested on well-studied molecules to be further applied to more complex nonlinear structures. However,
the integral changes need to be approximated in the wave functions of large molecules.

Material and methods: The numerical simulations in MATLAB were carried out to be compared with
the data from Gaussian 09, which are accurate for such small molecules as Rhodamine 6G. MATLAB
calculated permittivity values for the frequency domains corresponding to absorption and fluorescence
based on the Fermi golden rule. Hence, any molecule can be represented as a composite quantum
mechanical system. Meanwhile, Gaussian 09 used the DFT method to determine permittivity.

Results: The Fermi golden rule can be applied due to the representation of the molecule as a complex
quantum mechanical system. The proposed numerical methods minimize error by using the Dirac delta
function. According to our hypothesis, the sum of the wave function of a particle in a potential well and a
particle in a ring equals the wave function of the entire system, thus making it possible to study large
molecules. As a result of the calculation for two wavelengths of 337 and 573 nm, the permittivity results
calculated using the proposed method in MATLAB are 2.98 and 6.27, respectively. Gaussian 09
calculated the same parameters at 2.85 and 6.23.

Conclusion: The resulting datasets show a high degree of correlation. Therefore, the research hypothesis
has been confirmed. The selected method also proved efficient, hence the enhancement of luminescence
can be achieved by changing the relaxation time of the excited state. Plasmonic nanostructures with
predetermined properties will controllably enhance the resulting field by the square of the superposition
modulus of their near-field. Consequently, conditions for highly coherent radiation with high intensity
and polarization can be predicted and calculated before an experiment is carried out.

KEYWORDS: DFT method; Fermi golden rule; Dirac delta function; luminescence; Rhodamine 6G;
wave function.
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Dyes include polyatomic molecules with an intense absorption band in the visible and
ultraviolet regions of the spectrum [1]. Benzene, pyridine or other rings constitute the
structural basis of such molecules [2]. Interest in such structures is dictated by the
phenomenon of luminescence [3]. Rhodamine 6G is one of the most well-studied dyes (1 =
0.5 — 0.7 wm) characterized by a high stimulated emission cross-section [4]. Although most
Rhodamine dyes used to be studied in solutions [5-7], recently there has been a growing
interest in the electronic properties of dyes at the interfaces between media [8-10]. Recent
studies present calculations of the optical response in dyes based on the ab initio molecular
dynamics [11, 12] at varying emission wavelengths, line widths, intensities, and lifetime [13,
14]. The DFT method established the eigenvalue of a molecule's molecular Hamiltonian and
stationary states in a molecule [15, 16]. However, this method is inapplicable to permittivity
calculations as it does not comprehensively understand wave functions corresponding to the
relevant stationary states. The current research aims to describe the spectra of laser radiation
within a model based on quantum mechanics and to verify the suggested model.

The structure of energy levels in the molecules of dyes can be represented by singlet S
and triplet T electronic states [17]. The energy levels of the Rhodamine 6G dye are shown in
Fig. 2. The energy state between vibrational levels is about 0,19 eV, while between rotational
levels, it reaches around 0,01 eV [19]. The broadening of the electronic energy level in the
solution is larger than the energy gap between the rotational levels. For this reason, spin
selection criteria determine possible combinations of transitions between/within electronic
states at rotational levels, while the electronic states represent virtually continuous zones of
permitted energy [20].

When light is absorbed, the molecule transitions from a lower energy level S, to an
excited level S; . Due to a rapid thermal relaxation (zr~10712 s) [3] at the energy level S, ,
electrons move to lower vibrational levels. A spontaneous transition to the level S, is
associated with fluorescent radiation. Thus, in dye solutions, optical excitation can lead to a
population inversion from the upper vibrational levels of the S, band to the lower ones of the
S, band. Amplification of light is observed at the frequencies corresponding to fluorescence.
The resulting data can be used in order to calculate luminescence of Rhodamine 6G. Further
enhancing luminescence can be accomplished with high-quality resonant systems [21-22],
widely used in nanophotonics.

MATERIAL AND METHODS

The large size of the dye molecule [23] determines the high value of the matrix element
of the dipole moment p of the molecule [24], since the electrons involved in the absorption of
light are "smeared" almost over the entire volume of the molecule. Consequently, the
absorption coefficient k~|u|? [25] can also reach values which determine significant
absorption of light in solutions even at a low carrier concentration, which gives the solution a
color that supplements the absorption spectrum. But it also implies that an increase in
fluorescence is associated with permitted dipole transitions S; — S,

The description of permittivity is usually [26] associated with point dipoles subject to
forced oscillations under the action of an external wave field. In this case, dissipation of
energy leads to oscillation damping when the external field is removed. Thus, in a system
consisting of point dipoles, the incident radiation can be absorbed, scattered. It can also have
no interaction with the medium (in this case, the material is transparent in a given spectral
domain) [27]. If the incident wave is represented as a monochromatic plane wave propagating
along the z-axis, it can be expressed with the following equation:

E;(7,t) = Egeltts=e9), )
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where ETn(?, t) is the incident field; k stands for the wave vector; w refers to incident
frequency. Polarization of the medium is expressed as follows:

d(#,t) = eox(0)E (7, 1), )

where J(F, t) is the dipole moment of the medium-related unit of volume and y(w) refers to
medium polarizability.
Then the field formed by point dipoles can be described as:
Ey ()~ — 25

> = iwzd(7,t). (3)

The resulting field in the medium can be described with the following equation:
Etoral = EG, 1) + Ep (@, 0), (4)
In classical electrodynamics, the presence of a group of dipoles causes a phase shift in a
field located within a medium or at its boundary. The phase, as mentioned earlier, shift leads
to both a weaker field (a change in the modulus of the E;,;,; Vvector) and a change in the

direction of wave propagation (phase of the E;,:,; vector). A specific case of such a shift to
be cited is a mirror that changes the phase of the reflected wave by .

y Ew
d

Ein

Fig. 1. Vector diagram of field superposition in the sample.

If viewed as a system in quantum mechanics, a molecule [18] can be viewed as a point
dipole changing its dipole moment over time. Taking into account this difference, we cannot
average the polarizability of the medium over time. Consequently, we have to consider the
molecule’s lifetime in the excited state and its nonradiative relaxation time. The calculations
in this article were based on dried samples. Thus, the mechanism of fluorescence connected
with permittivity is be modeled as follows:

1. Luminescence in Rhodamine 6G is represented as a two-level system;

Dipole moment operators are established for each transition, while the wave functions
are presented for the particle in the ring [28];

The level population is calculated with the help of the Fermi Golden Rule [29];

The equation is used to calculate the permittivity [30];

Calculations using MATLAB are carried out [31];

The results are compared to those obtained using Gaussian 09 [32].

N
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Fig. 2. Yablonsky diagram of Rhodamine 6G energy levels and its structural formula.

The permittivity of the medium, which takes into account quantum mechanical effects,
can be represented as [33]:

2 2 2 2
321’ Neg |4 32n2ey | Ni|di] Na|da1] N3|ds;|

; =1+
3h ) whi—w?+ilw 3 |wiz—w+ilw = wij—w?+ilw  wi—w?+ilw

=1+

)

where N is the population of the level, &, — vacuum permittivity, 1 — Planck's constant, d;
— transition dipole moment operator and w;; — frequency of transition from level i to
level j.

In the first approximation, we observe transition to excited vibrational sublevels of the S;
level with the dipole moment d,; and the transition frequency w,3. It is followed by
nonradiative relaxation to the lower vibrational sublevels of the S; level with the dipole
moment d5, and the transition frequency ws,. The last radiative transition goes from the
lower vibrational sublevels of the S; level to the upper vibrational sublevels of the S, level
having the dipole moment d,; and the transition frequency w;,. Meanwhile, energy levels
broadening depends on the lifetimes in states i and j [34]:

p=1F+1 (6)

2|7 ‘L'j.

The dipole moment operator is calculated based on the volume of the entire molecule
[35]:

dji = (i) = J, pjlea+ Dy)¢g; (7)

where a is the radius of the excited electron orbit and Ds is the dipole moment of the
structure.
The wave functions of a particle in a ring can be expressed as follows [28]:
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<pn=me R, (8)

3=ea+DS. 9)

The N;, N,, N5 3 levels population is calculated according to the Fermi golden rule [33]:
2 2
Ni = W(l)Ti ’ (11)

where §(w; — w; — w) — Dirac delta distribution and 17” — the element which can be
calculated as:

A~

V..:

=-Ed. (12)

N |-

The non-radiative transition shown as the third term in the formula (5) of permittivity,
taking into account thermal radiation, is represented as follows [36]:

2 cu
where u is the electromagnetic density of thermal radiation [33]:
how?® 1
U= a e (4

Where k is Boltzmann's constant, T — thermodynamic temperature, E — electric field
tension can be determined as a superposition of the electric field formed by the nucleus and
the rest of electrons that are not involved in the radiationless transition.

RESULT AND DISCUSSION
Permittivity was calculated in MATLAB. The input data are given in Table 1.

Table 1. Initial data [37] for the numerical calculation of the permittivity

(I?;l)dius of the Rhodamine 6G ring (from Gaussian 9102x10° m
Lifetime on the ground vibration SO level 10x10° s
Lifetime on the S1 ground vibration energy level 10x10%s
Lifetime on the S1 higher vibration energy level 10x10°s
Absorption frequency 5.589x10%° st
Emission frequency 3.287x10% st
Nonradiation transition frequency 2.302x10%° st
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The data obtained due to simulation in MATLAB were verified through calculations in
Gaussian 09. The interactive chemical structure model of the molecule is shown in Fig. 2
(from Avogadro 1.1.1). The calculation was carried out using a method based on the Hartree-
Fock theory without imposing symmetry restrictions but with the DFT functional, which is an
economical method for including electron correlations with a three-parameter density
functional — Becke3LYP (B3LYP). The OPT method optimized the geometry using the basis
set of cc-pVDZ orbitals. The DFT method calculated the molecular properties of the
Rhodamine 6G, and then the Clausius-Mossotti approximation was used to determine the
permittivity [38, 39]. The calculated values of permittivity obtained in MATLAB and
calculated in Gaussian 09 are shown in Table 2.

Fig. 3. The interactive chemical structure model of the Rhodamine 6G molecule.

Table 2. Calculation of permittivity for two wavelengths

B3YP/cc-pvDZ MATLAB
€ 2.85 (A=337 nm) 2.89 (A=337 nm)
€ 6.23(A=573 nm) 6.27(A=573 nm)

Permittivity generally depends on the lifetime of the molecule in an excited state as well
as on the nonradiative transition time. Therefore, it is possible to change permittivity by
modifying the relaxation time of the excited state. This approach is used to enhance the
luminescence by amplifying the local field. In this case, the analysis of formula (10) provides
a better understanding of the conditions where the maximum enhancement is reached. In this
case, the phase difference between the incident wave and the electric dipole can be divided by
mz. Such enhancement applies to plasmonic nanostructures. These structures transform the
incident field into a surface wave [40], where the electric field vector is parallel to the
medium polarizability vector. The resulting field is amplified in proportion to the square of
the near-field superposition modulus, which allows controlling enhancement of the dye
luminescence by creating a predetermined near field.

Currently, numerical calculations are based on RCWA and FDTD methods which involve
permittivity convolution [41, 42]. A supercomputer is often required in order to perform the
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calculations needed. In the case of large and complex biophysical systems, it is impossible to
perform calculations in nonlinear media where the permittivity depends on the exciting
electric field. Primarily, it is due to the fact that the presence of float point accuracy [43] leads
to the Gibbs phenomenon [44]. On the other hand, the dynamic matrix of permittivity cannot
be used in convolution [32]. Thus, a robust method is required in order to avoid the
difficulties described above when performing calculations for complex nonlinear biophysical
systems. The new and original method proposed can be applied for this purpose. It considers a
qguantum mechanical system in the electrodynamic approximation where a discrete continuum
of energy interacts with a continuous one.

CONCLUSION

The paper presents a numerical method for permittivity calculation using a quantum
mechanics approach. The representation of a molecule as a complex quantum mechanical
system makes it possible to use the Fermi golden rule. The wave function of such a system for
a small molecule of Rhodamine 6G can be presented as the sum of the wave functions for a
particle in a potential well and a particle in a ring. The wave equation for large molecules is
difficult to solve with Gaussian 09 as it requires much time and a supercomputer. Sometimes,
it is not possible at all due to the accumulation of system errors when calculating the
electronic structure of atoms. Applying the proposed numerical methods minimizes the error
due to the Dirac delta function. Therefore, numerical simulation for MATLAB is relevant to
establish the optical characteristics of molecules of any size. In this paper, the data obtained
from MATLAB were compared with the calculations carried out in Gaussian 09. As a result
of the calculation for two wavelengths of 337 and 573 nm, the permittivity results calculated
using the proposed method in MATLAB are 2.98 and 6.27, respectively. Gaussian 09
calculated the same parameters at 2.85 and 6.23. The resulting data show a high degree of
correspondence, which confirms that representation of the quantum mechanics properties of
Rhodamine 6G is functional and the selected numerical method is valid.

These results are important for studying more complex molecules, such as toxins or
nucleic acids. Integral changes in the wave functions of complex molecules can also be
represented as a sum of wave functions describing changes in the structural parts of a large
molecule. Nevertheless, the core of large molecules can cause disturbances that should be
considered. The proposed numerical method can be further used to verify experimental data
on the optical properties of molecules. This technique makes it possible to predict the optical
properties of nanostructures and carry out theoretical calculations of the conditions for highly
coherent radiation of high intensity and a high degree of polarization Permittivity describes
both the molecule’s optical response as well as the medium's response, which can refer to any
solution or solid. The working hypothesis of new research may be to test this method on wet
data since this article only considered dried samples.
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a i BUKOPUCTaHHs PO3PaxyHKiB, OTPUMAaHHX K aHAJITUYHUM, TaK 1 YUCEIbHUM IIUIIXOM.

Meta. Metonu po3paxyHKy JieeKTPHYHOT IPOHUKHOCTI SIK (PeHOMEHOJIOTTYHOT XapaKTepUCTUKH 3pa3Kka
MOBHHHI OyTH TEpeBipeHi Ha M0oOpe BUBUCHHX MOJICKYJaxX, 100 Hajaii 3acTOCOBYBATHUCS 1O OLIbII
CKJIQJIHUX HENHIHHUX cTpyKTyp. OmHaK iHTerpaibHI 3MIHM XBMWJIBOBHX (DYHKILIH BEIMKHX MOJEKYI
HEOOXiHO arpOKCHMYBAaTH.

Martepian i merogu. Uncensune monemoBanHs B MATLAB 0Oyno mpoBeneHo A MOPiBHAHHS 3 TaHUMU
Gaussian 09, sxi € TOYHUMH I TaKUX HE BENUKHAX MoJekynd, sk Rhodamine 6G. Y MATLAB 6yno
PO3paxoBaHO 3HAYCHHS MiCNEKTPUYHOI MPOHHUKHOCTI MJIS YaCTOTHUX oOJacTei, 1o BiIOBiZAIOTH
MOTJIMHAHHIO Ta (IIyopeceHIlii, Ha 0CHOBI 3050Tor0 npaBmwia Pepmi. O1xke, Oyab-IKy MOJIEKYITy MOXKHA
TIPEICTaBUTH K CKJIaIHy KBaHTOBOMEXaHiIuHy cucteMy. Y Gaussian 09 OyB Bukopuctanuii meroq DFT
JUISl BU3HAUEHHS /1IeJIEKTPUYHOI TIPOHUKHOCTI.

PesyabtraTu. 3onore mpaBuno ®depMi MOKHA 3aCTOCYBaTH 3aBISKH MPEACTABICHHIO MOJEKYJIH SK
CKJIaJTHOI KBAaHTOBOMEXAHIYHOI CHCTEMHU. 3alpOINOHOBAHI YHCEIIbHI METOJIM MIHIMI3yIOTh MOXHOKY 3a
JIOTIOMOT 010 JienbTa-¢yHKuil Jlipaka. 3riHO 3 HAIIOIO TiMOTE3010, CyMa XBHJIBOBUX (DYHKIIIH YaCTHHKH B
MOTEHIIIHIH sIMi Ta YaCTHHKHU B KUIBI JOPIBHIOE XBUJIbOBIN (QyHKILIT BCi€l ccTeMH, 10 1a€ MOXKIUBICTh
JOCTIKYBATH BEIUKI MOJIEKYTH. B pe3ynbraTi po3paxyHKy [UIS ABOX IOBXHH XBWIb 337 Ta 573 HM,
pe3ysbTaTH [iCNIEKTPUYHOT TPOHUKHOCTI OOYHMCIEHI 3a JOIOMOTOI0 3alpONOHOBAHOTO METOJa B
MATIJIAB nopiaroBamu 2,98 Ta 6,27, Biamosimuo. Lli cami mapamerpu oOYHCIEHI 3a JAOIOMOTOIO
Gaussian 09 nopiBHroBamu 2,85 ta 6,23.

BucnoBok. [TopiBHSHHS pe3ynbTaTiB MMOKa3ye BUCOKWH CTYIIHB BiAMOBITHOCTI MK HabopamMH JaHUX.
OTxe, rimoTe3a Ta BuOip Metony Oymu BipHUMH. [loCHIICHHS TIOMIHECHEHIII MOKHA JOCATTH 3MIiHOIO
yacy perakcanii 30ymkeHoro crany. [lna3MOHHI HAHOCTPYKTYpH 13 3a3fajeriip BU3HAYEHHUMU
BJIACTHBOCTSIMH MOXYTh KEPOBAaHO MOCHJIIOBATH Pe3yJIbTyIOUe 10JIe Ha KBaJpaT MOIYJIS CyNepro3uIii ix
6mmkHbpOro nossi. OTKe, YMOBHU Ul BACOKOKOT'€PEHTHOTO BUIIPOMIHIOBAHHS 3 BHCOKOIO IHTEHCHBHICTIO
Ta MOJSIPU3ALIEI0 MOXHA Mepe0auuTy Ta po3paxyBaTH 0 EKCIIEPUMEHTIB.

KJIFOYOBI CJIOBA: meron DFT; 3onote nmpasuno @epwmi; nensra-¢ynkuis Jipaka; mominecnenuis; Pogamin 6G;
XBHJIbOBA (DYHKITisSt



