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The study of soft tissues shear elasticity modulus using the remotely induced shear waves is presented. Shear waves
generation was carried out using transient acoustic radiation force with ultrasound intensity in the focal point equal to
145 W/em?®. The transient acoustic radiation force duration was equal 2,18 ms. Measurements of the shear waves
propagation velocity were made in the transducer focal plane by means of Doppler method using shear excitation
propagation time. The following cow tissucs were taken as the objects of study: liver, brain, udder, muscle tissues,
spleen. The values of shear wave propagation velocity in tissues were obtained. The values of shear elasticity
modulus were calculated using the known correlation between shear elasticity modulus, tissue density and velocity. It
was shown that the studied soft tissues differ in shear modulus value and, moreover. muscle tissues have high
anisotropy of properties directed lengthwise and across the muscle fibers. The tissues elasticity and viscosity modulus
were evaluated on basis of the shear excitation relaxation analysis.
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It is known that soft tissues can be described by means of several viscoelastic properties, such as shear
elasticity modulus, viscosity, the Poisson coefficient etc. [1,2]. Intensive research during the past few years
showed that changes of soft tissues mechanical properties and the shear elasticity modulus in particular are the
sensitive indicator of different pathologies [3-5]. Changes of mechanical properties can also indicate a different
physiological state of a tissue, for example for the muscle tissue its elasticity and viscosity are different at muscle
quiescent mode and during contraction [6]. Specifically such a natural process as the ageing leads to a tissue
elasticity and viscosity change [7]. Moreover, tissues viscoelastic properties can differ depending on an organ
type, or they can reveal anisotropy of properties in different directions [8-10].

Tissue elasticity evaluation by means of palpation is one of the main approaches that are conventionally
used by physicians to diagnose some diseases. Tissues changes became palpable only when their elasticity
becomes higher or lower then that of a surrounding tissue. The subjective estimation of organ elasticity is an
important part of diagnostics of such organs as liver, spleen, thyroid gland and even of an eyeball. Recently
certain efforts were taken by some researchers to measure or to estimate some other mechanical properties of a
tissue, such as nonlinearity of the elasticity modulus, viscosity, the Poisson coefficient and their time variation. It
is supposed that these tissue parameters can provide us with some additive, diagnostically useful information,
necessary to diagnose the disease more accurately [11, 12].

Ultrasound and nuclear magnetic resonance (NMR) are the main physical methods that are used for tissue
elastic properties visualization and they promise to provide us with quantitative information on tissue elasticity
[21,22]. Each of these methods has its own advantages and disadvantages. Though the uwlirasound visualization
as the elasticity visualization method appeared a bit earlier, still NMR method is being mmproved fast enough and
can compete with ultrasound elastwnty visualization method at least for some organs vissalization.

The potential and promising fields of application of ultrasound and NMR elasticity visualization are the
following:

1. Detection and characterization of superficial and deeply located soft tissue regions, including breast
cancer, prostate gland cancer, nodules in glands, thyroid gland etc.

2. Quantitative estimations of organ and tissue elasticity changes in comseguence of such diseases as
cirrhosis, kidney diseases and thyroiditis.

3. Vascular studies: arterial wall elasticity and level of vein thrombosis estimasion. The inflammation of
arterial wall is characterized by elasticity changes. This phenomenon freguently leads to arising
atherosclerosis plaques in a vessel. The continuous supervision of the wall mechanical properties can
improve the opportune qualitative diagnostics. At present noninvasive achievement of this aim is quite a
problem.

4. Estimation of effective tissue treatment volume during ultrasound, microwave and cryoablation therapy.

5. Supervision tissues fluid translocation in of patients having such diseases as lymphoedema, cyst
formation etc.
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MATERIALS AND METHODS OF THE RESEARCH

The aim of this study was to quantitative assessment the shear elasticity modulus of some cow soft tissues
in vitro. Research was carried out on soft cow tissue, in particular: liver, brain, breast, cardiac muscle, kidney,
spleen and also muscle tissues that were studied for two cases of share wave propagation direction: lengthwise
and across muscle fibrils. The studied tissues have passed veterinary survey and had no pathological changes.
The tissues after extraction and before studying were kept during 12-14 hours under the room temperature.
Measurements were made under the temperature equal to 22°C. The probing ultrasound focused transducer with
the operating frequency equal to 3.5MHz was used during the studies. The subsidiary high power ultrasound
transducer with the operating frequency equal to IMHz was used for local straining as well as for shear wave
excitation in biological tissues. Studies carried out were implemented by means of the experimental ultrasound
Doppler equipment described in detail in [13-15].

The acoustic radiation force is a phenomenon connected with wave propagation through the dissipative
mediums. It is occurred by the acoustic energy density gradient presence observed in the medium that appears as
a result of acoustic waves absorption or reflection. The acoustic energy density gradient leads to the
unidirectional force occurrence in the direction of wave propagation. In the absorbing medium and under a plane
wave approach this force can be represented as follows: F = 2al/c, where F denote the acoustic radiation force,

a - the absorption factor of the medium, / — the time averaging wave intensity in the given space point, ¢ -
longitudinal sound-wave velocity. The displacement of tissue induced by radiation force in the measurement
volume is the most informative parameter using which one can define the shear modulus and velocity of induced
shear waves.

The algorithm of signals phase calculation using the elements of input data set was used in the presented
experimental research. On the output of a digital receiver there was observed a sequence sampling of the
complex Doppler signal U(j)=U(jT,,)=exp(-i¢,), where j — is the probe number. The Doppler signal

phase ¢, at jT,, is directly connected to the reflector location and its velocity V within the measurement

volume:
@; =2k, =2kVjT,,, (1)
Our equipment allowed us to calculate directly the Doppler signal phase ¢, and using its estimated value to

calculate the reflectors displacement, including the full displacement after the termination of acoustic radiation
force action. The displacement between two probe pulses is equal to:

x; =% =(J—KkWT,r =(p;, —¢:)[2k. (2)
The calculations presented above were performed by a signal processor in the real time.

On Fig.1 there is a schematic drawing
of the approach used for biological tissues
elastic properties measurement that is based
on analysis of shear displacements induced
by acoustic radiation force and on usage of
the Doppler method. As it is seen from the
Figure a high-power ultrasound pulses were
radiated along the given directionZ,
inducing the maximal radiation pressure
force in a focal area of the subsidiary
transducer. On completion of a radiation
force action the shear disturbance induced in
the focal area starts the radial propagation
from the subsidiary transducer axis.
Therefore the displacement for the points
outside the focal area is going to be maximal
in ¢ertain point of timer, this value is
inversely proportional to shear wave
propagation velocity: 7=rfc;, where r
denote a radial coordinate of the probe point,
and ¢, a shear wave velocity.

Measurements of tissues displacement
amplitudes and propagation times 7 of shear
waves were made sequentially in different

Excitation Transducer

Fig.1 Schematic drawing of the approach used for elastic properties
measurement
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points located in the focal plane.

The results of measurement of shear wave propagation time to the probe point were used for the shear
modulus value estimation. The average value of shear wave velocity in the measurement zone was calculated
using the obtained values of propagation time. Velocity value ¢, is directly connected to the shear elasticity

modulus according to the known correlation: ¢; =/4/p , where y - denote a displacement modulus, and p

denote a tissue density.

Scheme of organs or their fragments location during the measurements is given on Fig. 2. A narrow zone
round the focal that is perpendicular to the transducer acoustic axis is of total length about 40 mm and about 5-6
mm wide. In this zone the measurement of shear wave propagation time values was carried out from the focal
point to the point of measurement. The number of points was varied in a random way and came to the value from
100 to 300. Tissues that did not have an expressed direction of structure were placed arbitrarily relatively to the
scanning plane, the only condition was an equidistant location of the measurement zone relative to a tissue
boundaries.

A skeletal muscle is the most mechanically
complex biological tissue. It is anisotropic,
dynamic, elastic and viscous tissue. The
preliminary data obtained in [16-17] basing on
NMR elastography approach show that elasticity
and viscosity are anisotropic and besides they are
not passive parameters but they change essentially
when contracting. Therefore in this work when a
muscle tissue studying there was also registered
the muscle fibres direction relative to the shear
wave propagation direction. Tissue was placed in
two ways: fibers lengthways and across the shear
wave propagation direction.

The acoustic palpation method gives a
principal ability of experimental study of shear
displacements excitation and relaxation processes
and their comparison with theoretically calculated
values. Previously to define the role of shear
viscosity in relaxation process and to obtain the
analytical expressions the following model was

Fig 2. Scheme of organs location during the measurements. analyzed in which not only the lengthwise

1 —probing transducer, 2 — subsidiary transducer, 3 - organ distribution in ultrasound waves beam is Gaussian

fragment, 4 — measurement zone, 5 — volume filled with but also the envelope of uitrasound pulses that
gelatine,

generate the radiate pressure force. As a result to
define the value of shear strains in the shear
excitation relaxation process the following expression was obtained [18,19]:

ra(ay") 1S, [1 o J

ut

S, (r.t) 3)

4 pococ,zt

Besides it was shown that a tissue displacement value reaches its maximum in the focal point for the point
oftimet =ay™' /c, :

-1_ ()
=J;aa}' tlori [l— 4v ) @)

SMAX(O) PoCoC,
0~0™1

where r - is a radial coordinate in the focal plane, a and ay ' - an effective radius of wave beam with Gaussian

cayr’

profile on the radiation surface and in the focal plane correspondingly , y =/, /R = ra’ / AR - is a wave focusing
level by the emitting surface with a radius of curvature R, A -is a wavelength, « - is an ultrasound absorption
coefficient, v - is a tissue kinematic viscosity, p, - is an equilibrium density, ¢, and c, - ultrasound and shear
waves velocity in tissue. The radiation intensity in expression (1) implies the intensity 7%, averaged over the
pulse duration in the focal point F' which is defined by the measured value of radiation intensity /g,,, .

The expressions (3) and (4), as it was shown in [2,19] turned out to be suitable for comparison with
experimental data and for simultaneous definition of soft tissues viscosity and elasticity since they describe all
the peculiarities of viscosity influence on shear strains. Therefore in [2] these expressions were used for
numerical evaluation of viscoelastic properties of soft tissues phantoms and tissues in vitro by means of
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obtained as a result of a new interpolation algorithm implementation.
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Unfortunaly absence of opportunity to measure the tissue viscosiy S % compare
the obtained estimated value of viscosity with its real value Howeses S pas of relaxation
curves obtained for liver and brain tissues for points located in the ' 2
relaxation curve maximum occurrence lets us assume that the =
viscosity of this tissue types. The corresponding viscosity evaluaton the Table)
justifies the assumption made. -

Tissue type Velocity Elasticity
C, HlS a,.Pe
1 | Brain 0.98 e
2 | Liver 1.11 135§ )
3 | Udder 1.24
4 | Spleen 1.05
5 | Muscle tissue (across fibers) 2.38
6 | Muscle tissue (along fibers) 5.20
CONCLL
As a result of the research the value of shear wawe ‘ fear elasticity
modulus was estimated. The results obtained show the coms x s values
for different tissues. It was shown that the parenchyma S pate differs in
about 20% in elasticity modulus value. The muscle tssue _ pies value 4 in
about 5 up to 20 times. It was showed that the muscie : properties
along and across the muscle fibers. Namely the shesr pronounced
properties anisotropy relative to muscle fiber direction. mes higher than
the one across the fibers. : g
Knowledge of soft tissue mechanical propestes & = methods
optimization and for comparison of its visualization g of imterest for

medical diagnostics namely for creation of data base of owed that
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the Doppler methods measuring of displacements caused by ultrasonic radiation force in tissues allows to define
distinction of elastic modulus of various tissues with a satisfactory precision. In compare with sonoelastography
[3,11,12], the usefulness of which is clearing by clinicians now, the proposed method has its own advantages and
can be a good complementary method for study of tissue viscosity and elasticity.

In spite of relatively high error of shear wave propagation velocity measurement this approach can turn out
to be useful when quantitative estimation of liver diseases (for example, fibrosis or adiposis) since it is known
that a liver elasticity modulus changes at that more than in two times, and viscosity is a parameter clinically
connected with an adipose tissue presence. The approbation of the new algorithm for simultaneous definition of
tissue parameters carried out using parenchyma tissues showed that the measured values match well with the
obtained estimated values of shear wave velocity.
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