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Seamounts interest researchers because of their high biodiversity, high levels of endemism, and their importance for
the dispersal and evolution of species. Especially interesting is the role of seamounts in the biogeography and
phylogeography of interstitial meiofauna, microscopic animals that mostly lack dispersal stages in their life cycle. In this
study, we analyse the composition of meiobenthic communities of the Senghor Seamount (Cabo Verde). The material
was collected during the M79/3 cruise of R/V Meteor in 2009. Benthic sediments were collected with a multicorer and
fixed with formaldehyde. Further extraction of meiofauna by density gradient centrifugation, sorting and counting of
higher-level taxa was carried out in the laboratory. Our analyses involved estimating taxa densities, estimating different
diversity indices and comparing similarity across sampling sites using non-metrical multidimensional scaling (hMDS).
The results of the analyses showed that the summit has the highest higher taxa richness (HT: 11-16), the lowest level
of dominance (D: 0.23-0.28), and the highest evenness of meiobenthic communities. The slopes had a lower level of
higher taxa richness (HT: 12—13), a higher level of dominance (D: 0.5-0.61), and a lower level of evenness. The base
had the lowest higher-taxon richness (HT: 10), the highest level of dominance (D: 0.82—-0.87), and the lowest evenness.
The nMDS revealed four distinct communities at the summit, the slope and the base of Senghor Seamount as well as
at the deep-sea reference stations. There was a high dissimilarity of stations on the summit, which may indicate both,
high biodiversity and heterogeneity of habitats. The slopes, the base and the reference sites show closer grouping of
stations, which may indicate lower biodiversity of these areas, however, a lower number of stations were analysed. In
comparison with other Atlantic seamounts and islands, Senghor Seamount shows up the second place regarding
richness of meiobenthic higher-level taxa. The noticeably higher meiobenthic density values could be caused by the
increased pelagic primary production in the sea area off tropical western Africa. Overall, the meiobenthic communities
of Senghor Seamount seem to support the hypothesis of seamounts as oases for fauna, demonstrating more diverse
assemblages compared to reference areas in the deep sea.
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Introduction

Seamounts are seabed relief forms that exceed 1 km in height above the surrounding deep-sea floor
(Yesson et al., 2011). The peculiarities of their topography and hydrodynamics provide special habitats for
marine biota (Mohn et al., 2021, Tojeira et al., 2025). Seamounts may be characterized by a high level of
primary productivity, which can affect both biodiversity and fauna density (Rogers, 1994), and is referred to
as the “seamount effect” (Dower, Mackas, 1996, Misic et al., 2012, Zhao et al., 2023).

A specific ecological component of benthic communities is the meiobenthos (meiofauna), which
consists of protist and metazoan organisms smaller than 0.5 mm but being retained on a 63 ym mesh
(Schmidt-Rhaesa, 2020). The biogeography of especially marine meiofaunal organisms is affected by the so-
called “meiofauna paradox”, connecting the widespread and disjunct distributions of many species in the
absence of dispersal stages in their life cycles, especially in interstitial taxa (Giere, 2009). However,
widespread distributions could be wrong assumptions and in fact represent limited distributions of several
genetically distinct but morphologically difficult (or impossible) to delimit “cryptic species” (Cerca et al., 2018).
In marine meiofauna research, including meiofaunal biogeography, seamounts are of significant interest. They
are considered as hotspots with a potential high level of endemism and richness of fauna compared to the
abyssal plain (e.g., Shank, 2010, Zeppilli et al., 2013, Trokhymchuk, Kieneke, 2024). Seamounts can play the
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role of “stepping stones” (Gad, Schminke, 2004), which means they could promote the spread of meiofauna
over long distances, but the entire role of seamounts in conjunction with the “meiofauna paradox” is probably
more complex (George, 2013).

Senghor Seamount (SSM), located in Cabo Verde (Cape Verde) archipelago (Fig. 1A), is a fairly
symmetrical and conical relief form. It is located in the northeast of the archipelago and is one of the edge points
of volcanic activity that formed the Cape Verde archipelago (Kwasnitschka et al., 2024). Its base at the deep sea
lays at around 3,200 m depth, and a considerably shallow summit plateau at about 100 m depth, which is
predominantly covered with a layer of coarse organogenic sand (Christiansen et al., 2011). Fish (Hanel et al.,
2010, Vieira et al., 2018) and planktonic fauna (Denda, Christiansen, 2014, Denda et al., 2017) of SSM have
already been studied, and concerning the benthos, studies were conducted on polychaetes by Chivers et al.
(2013) and Watson et al. (2014), and on kinorhynchs by Yamasaki et al. (2019). The results demonstrate a high
number of endemic or possible endemic species for meiobenthic taxa.

In this study, we present results of the first analysis of the meiobenthic community based on higher-
level taxa of Senghor seamount and compare them with those of other studied seamounts and islands of the
Atlantic Ocean. Based on such pre-existing knowledge (e.g., Buntzow, 2011, Zeppilli et al., 2013, George,
2022), we expect differences of meiofaunal diversity and densities across the bathyal gradient of SSM.
Possible drivers for such patterns, but also for differences between different seamounts will be discussed.

Materials and Methods
The cruise M79/3 of R/V Meteor (Fig. 1A-C) was conducted in the Cabo Verde (Cape Verde) region in
September 2009 (Christiansen et al. 2011). Sediment samples were collected using a multiple corer (MUC)
equipped with 12 cores of 9.4 cm inner diameter (= 69.40 cm? of sampled area per core tube) from aboard
the research vessel. Samples were taken from summit plateau, slopes (flanks), seamount base and from
abyssal plain at a distance of about 50 km and 100 km from SSM as southern and northern reference sites,
respectively (Tab. 1; Fig.1B, C). The composition of summit sediments was mainly of carbonate material of
organic origin such as coral, echinoderm and mollusc fragments, amongst others (Fig. 1D, E).

The upper 5 cm of sediments were cut from each core sample and immediately fixed with
formaldehyde at the final concentration of about 8% (v/v). Meiofaunal specimens were extracted by density
gradient centrifugation (Pfannkuche, Thiel, 1988, Somerfield et al., 2005) using the colloidal silica Levasil®.
Sorting of the major taxa was carried out at the department DZMB of Senckenberg am Meer, Germany; for
a better visibility under the stereo microscope, each centrifuged sample was bulk-stained with Rose Bengal.

Table 1. Sampling stations of the multiple corers during the M79/3 cruise (Senghor Seamount) and
cores that were analysed in the current study. * — depth according to the station protocol sheet, no depth
value in the cruise report (failure of echosounder).

Cruise Station Corer Latitude Longitude  Depth [m] region
M79/3 825 7 18° 05.00' N 22° 00.20' W 3293.9 deep reference N
M79/3 848 5 17°11.31'"N 21° 57.20' W 101.3 summit central
M79/3 849 2 17°11.31'N 21°57.20' W 102.0 summit central
M79/3 850 2 17°11.31'"N 21° 57.20' W 102.4 summit central
M79/3 864 2 17°12.29'N 21° 57.69'W 132.4 summit NW
M79/3 864 7 17°12.29'N 21° 57.69' W 132.4 summit NW
M79/3 865 4 17°12.30'N 21°57.70' W 383.2 summit NW
M79/3 866 3 17°12.30'N 21°57.70' W 133.6 summit NW
M79/3 934 7 17°12.94'N 21°56.37' W 565.2 upper slope NE
M79/3 934 10 17°12.94'N 21°56.37' W 565.2 upper slope NE
M79/3 1016 3 17°09.80'N 22° 09.64' W 3193* base W
M79/3 1016 8 17°09.80'N 22° 09.64' W 3193* base W
M79/3 1044 1 17°10.62'N 21°56.82' W 102.7 summit SE
M79/3 1046 5 17°07.51'N 21°55.50' W 1545.0 mid slope SE
M79/3 1049 2 16°45.00'N 22° 06.01' W 3376.1 deep reference S
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Fig. 1. Study area during the M79/3 expedition of R/V Meteor (September — October 2009). A Map
covering the Cape Verde archipelago and western Africa and the study area in between (indicated by blue
rectangle); B Study area with Senghor Seamount and northern and southern reference sampling sites
(stations 825 and 1049); C Closeup of Senghor Seamount and analysed sampling sites on the summit
plateau, the upper slope, the lower slope and the seamount base. Map source: GEBCO. D Still from ROV
Mohawk (subAtlantic) video footage with upper slope of Senghor Seamount, station 862 at 248.5 m depth.
Image by R. Koppelmann, Hamburg; E Biogenic coarse sand from Senghor Seamount summit, station 845
at 102.9 m depth.

To assess meiobenthic diversity, we calculated the following diversity indices: higher taxa richness
HT; individuals number N; dominance D (Simpson, 1949); Shannon Index H’ (Shannon, Weaver, 1963);
and Pielou’s Evenness J (Pielou, 1966). The affiliation of taxa to dominance classes follows the
classification of Engelmann (1978). For testing a possible bathymetric pattern of meiofaunal abundances,
a linear regression between meiofaunal density of each core against its depths has been carried out. To
analyse (dis)similarity between stations we performed non-metric multidimensional scaling (hMDS) based
on absolute abundances and using the Bray-Curtis Index without transformation (Bray, Curtis 1957) as a
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measure of (dis)similarity. We refrained to perform an analysis of variance such as the PERMANOVA due
to an unbalanced sampling size between the sampled areas (summit, slope, base, reference sites).
Statistical analysis was performed using software Past 4.03 (Hammer et al., 1999-2022). The map was
created using the Open Source QGIS 3.34 Prizren.

Results

In total, from 15 sampling sites (13 MUC cores from Senghor seamount and two additional cores,
one from each reference area) we recovered 47,338 meiofauna individuals, belonging to 19 taxa (44,991

individuals and 19 taxa for Senghor Seamount; 2,397 individuals and 11 taxa for reference sites; Tab.

S1). The most abundant taxa were Nematoda (Figs. 2, 3A, B) and Copepoda (Figs. 2, 3H), including their
nauplii, followed by Annelida (Figs. 2, 3E, F). The relative abundance of Nematoda showed an increase
from the summit to the base, while that of Copepoda and Annelida decreased with increasing depth (Fig.

2, Table 2). Gastrotricha (Fig. 3, J) exhibited a relative abundance up to 8.8% in summit samples.
Tardigrada (Fig. 3C, D) also reached its highest relative abundance of up to 3.2% in summit samples.

Relative abundances of Ostracoda (Fig. 3G) appear rather uniform across all seamount samples, ranging
from 0.2 to 2.0%.
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Fig. 2. Relative abundances of the most abundant meiofauna taxa from the analysed core samples
of cruise M79/3 (Senghor Seamount). “Others” represent all the remaining taxa apart from Nematoda,
Copepoda and Annelida (see Tab. S1).

Table 2. Ranges of relative abundance of the three most dominant meiofauna taxa and all remaining
groups (see Tab. S1) pooled as “Others” at the three bathymetric areas sampled on Senghor
Seamount and at two reference stations during cruise M79/3.

Areal/taxon Nematoda Copepoda Annelida Others
Summit 22.4-43.3% | 40.7-53.0% 4.0-8.9% 7.4-17.8%
Slope 68.1-76.9% | 19.8-25.4% 0.6-1.8% 2.0-4.2%
Base 90.2-93.3% 5.5-7.5% 0.7-1.5% 1.1-1.3%
Reference samples | 77.4-78.8% | 16.1-18.4% 0.6-1.9% 2.3-4.4%
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Fig. 3. Representatives of the most abundant meiofauna major taxa from Senghor Seamount: a, b

Nematoda; ¢, d Tardigrada; e, f Annelida; g Ostracoda; h Copepoda; i, j Gastrotricha. Specimens a—g from
station 864; h—j from station 866 of cruise M79/3. Scale bar: 100 pm.
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All the other taxa (Acari, Amphipoda, Bivalvia, Chaetognatha, Coelenterata, Gastropoda, Isopoda,
Kinorhyncha, Loricifera, Ophiuroidea, Rotifera, Sipuncula and Tantulocarida) were present in much lower
abundances (Tab. S1). Meiofaunal densities (Tab. S2) exhibited a depth-related pattern across the
seamount samples (Fig. 4). While two samples from the summit show rather low densities of less than 200
ind./10 cm?, all other summit samples have values between 450 and 550 ind./10 cmZ2. Following the
bathymetric gradient from the summit and along the slope of SSM down to its base at about 3,200 m, the
meiofaunal densities tended to increase from summit to slope, although this slight positive correlation was
not statistically significant (p = 0.6206), with values around 550 ind./10cm? (summit), almost 700 ind./10cm?
(slope), and up to 650 ind./10cm? (base). In contrast, the abyssal reference sites displayed densities
comparable to the two lowest values observed on the summit plateau, with meiofaunal densities of less
than 200 ind./10 cm? (Fig. 4).
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Fig. 4. Densities (individuals/10 cm?) of the meiofauna from the analysed sampling sites (cores) of
cruise M79/3, arranged by depth. Densities showed a positive correlation with depth, however, not
statistically significant (p = 0.6206).

Samples from the summit have the highest taxa richness (HT = 11-16, Tab. 3), followed by the slope
(HT = 12-13) and the base (HT = 10). For the reference sites HT was from 10 to 11 and, comparing to the
seamount, they lack on eight taxa: Amphipoda, Bivalvia, Chaetognatha, Coelenterata, Gastropoda,
Isopoda, Ophiuroidea and Sipuncula. There are no taxa present in the reference sites that are not found in
the seamount samples (Tab. S1).

Table 3. Diversity indices for the analysed cores of cruise M79/3 (Senghor Seamount) based on
meiofauna major taxa abundances. HT — higher taxa richness; N — individuals’ number; D — dominance;
H’— Shannon Index; J — Pielou’s Evenness. Reference samples highlighted in grey.

825-7 | 848-5 | 849-2 | 850-2 | 864-2 | 864-7 | 865-4 | 866-3 | 934-7 [934-10|1016-3 |1016-8 | 1044-1|1046-5 [ 1049-2
HT| 11 14 12 14 1" 1" 16 15 13 13 13 10 11 12 10
N | 1129 | 1275 | 1084 | 3107 | 3387 | 3482 | 4361 | 3804 | 4168 | 4689 | 4443 | 4164 | 3505 | 3522 | 1268
D | 064 | 024 | 024 | 023 | 028 | 0.28 | 0.26 | 025 | 0.53 | 0.50 | 0.82 | 0.87 [ 0.25 | 0.61 0.62
H | 080 | 175 | 1.70 | 1.70 | 155 | 155 | 160 | 168 | 098 | 1.08 | 045 | 033 | 164 | 0.83 | 0.83
J | 033 | 066 | 0.68 | 0.65 | 0.65 | 0.65 [ 0.58 | 0.62 | 0.38 | 042 | 0.18 [ 0.14 | 0.68 | 0.33 | 0.36
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The highest dominance was observed for the base (D = 0.82-0.87, Tab. 3), followed by the slope
(D = 0.5-0.61). For both areas, the eudominant taxon were nematodes. The lowest levels of dominance
were observed for the summit (D = 0.23-0.28), indicating that taxa are occurring more equally. The
dominance index for the reference sites is 0.62—-0.64 (Tab. 3), again with nematodes as eudominant taxon.

The Shannon diversity index was highest at the summit, ranging from 1.55 to 1.75 (Tab. 3). These
values are quite low, which is generally common for meiobenthic communities. However, all other areas of
the seamount, as well as the reference sites, exhibited even lower Shannon index values (see Tab. 3). The
values of the Equitability index (Pielou’s Evenness, J) generally correspond to those of the Shannon index,
with the highest values observed for the summit communities and lower values for the slope, base, and
reference sites (Tab. 3).

The nMDS plot of the analysis of similarity revealed distinct patterns in meiofaunal community
composition across sampling areas (Fig. 5). A stress value of 0.064 indicates relatively good sample
ordination with low risk of misinterpretation. All analysed cores show a distinct grouping into samples from
the summit, the slope, the base and the reference sites (Fig. 5). However, the two shallowest samples from
the summit area (849-2 and 848-5) are separated from remaining summit stations (Fig. 5A). The reason for
such a diverging may be caused by higher-taxon diversity, combined with low abundance values, and
therefore dissimilarity between the shallower stations on the summit plateau and the deeper ones. In order
to test the influence of these two outlier samples, we ran the analysis with the same settings, but excluding
these two cores. In this case we were able to observe an even closer grouping of the four areas, while the
stations of the slope and the base of SSM almost cluster as a common group (Fig. 5B).
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Fig. 5. nMDS plots, showing (dis)similarities (Bray-Curtis index) between meiofauna abundances
from the different analysed sampling sites (cores) of expedition M79/3 to Senghor Seamount. A All
core samples included; B Core samples 849-2 and 848-5 excluded.

Meiofaunal communities of the base stations and the deep-sea reference stations as well showed a
high within-group similarity. Overall, we have to keep in mind that the number of analysed cores is quite
unequally distributed among the four areas (i.e., summit = 8, slope = 3, base = 2, reference areas = 2).

Discussion

The analyses of meiofaunal communities of Senghor Seamount (SSM) revealed patterns that much
likely depend on abiotic differences in sampling sites, such as depth or sediment composition. The relative
shallow-water summit at about 100—130 m depth exhibited the highest taxa richness and evenness. This
observation is similar to the results of other seamounts in the Atlantic Ocean, e.g., the Azorean Condor
Seamount (Zeppilli et al., 2013), but higher values have been reached at SSM. The summits of seamounts
that particularly reach shallow water depths may provide a more heterogeneous biotope, because of
biogenic sediments as a main substratum, which offers a large number of niches for organisms of various
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size classes (Soltwedel, Thiel, 1995, Passarelli et al., 2012). The slope and base communities usually show
a relatively lower diversity and evenness of higher-level taxa, mainly caused by the high dominance of
Nematoda (Biintzow, 2011, Zeppilli et al., 2013, George, 2022), which is also the case for SSM. The highest
meiobenthic density of SSM was observed at the upper slope at 565.2 m depth. Similar trends were
reported from the slopes of Josephine Seamount (Levin, Gooday 2003) and Condor Seamount (Zeppilli et
al., 2013), but with lower values compared to SSM. This general pattern of higher meiofaunal densities at
SSM could be related to its position off tropical western Africa, a sea area which has a very high annual
primary production (e.g., Nellemann et al., 2008). Circular current systems (i.e., eddies) are known to
transfer nutrients and biomass from near-shore water bodies to the Cape Verde archipelago (Fischer et al.,
2016). A similar effect of the fertility of the water masses surrounding a seamount on the composition and
densities of its macrofaunal communities has already been described (Boehlert, Genin, 1987 and
references therein). The higher meiofauna densities at the slopes and even at the base compared to the
summit (Levin, Gooday, 2003, Zeppilli et al., 2013, this study) could correlate with an increased export of
particulate organic carbon from the summit of tall seamounts to its slopes, as it was already described for
SSM (Turnewitsch et al., 2016).

George (2022) provided an overview of the meiobenthic major taxa occurrences of nine seamounts and
oceanic islands of the Atlantic Ocean, and we are now able to integrate our data to this comparison (Tab. 4).

Table 4. Occurrences of meiofauna major taxa on different northern Atlantic seamounts and oceanic
islands according to George (2022) and supplemented with results from the current study

No. | Major taxon GMS SedS SeiS ConS | Terceira | St. Maria| Flores SSM
1 Acari X X X X X X X X
2 Amphipoda X X X X X
3 Annelida X X X X X X
4 Bivalvia X X X X X X
5 Bryozoa X
6 Chaetognatha X X
7 Cnidaria X X X
8 Copepoda X X X X X X X X
9 Cumacea X X
10 Echiura X
11 Entoprocta X
12 Gastropoda X X X
13 Gastrotricha X X X X X X
14 Isopoda X X X X X X X X
15 Kinorhyncha X X X X X X X X
16 Leptostraca X
17 Loricifera X X X X X X X X
18 Nematoda X X X X X X X X
19 Ophiuroidea X
20 Ostracoda X X X X X X X X
21 Pantopoda X X
22 Priapulida X X
23 Rotifera X X X X
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No. | Major taxon GMS SedS SeiS ConS | Terceira | St. Maria| Flores SSM
24 Sipuncula X X X
25 | Solenogastres X

26 Tanaidacea X X X X X X

27 | Tantulocarida X X X X
28 Tardigrada X X X X X X X X
29 Turbellaria X

GMS — Great Meteor Seamount (George, Schminke, 2002); SedS — Sedlo Seamount (Biintzow, 2011); SeiS
— Seine Seamount (Bintzow, 2011); ConS — Condor Seamount (Zeppilli et al., 2013); SSM — Senghor
Seamount (current study)

Flores, Terceira, and St. Maria Islands of Azores archipelago (George et al., 2021)

SSM shows high meiobenthic major taxa diversity relative to other Atlantic seamounts and islands.
It is already the second place after the Great Meteor Seamount, with the absence of representatives of
seven major taxa: Bryozoa, Cumacea, Entoprocta, Leptostraca, Pantopoda, Tanaidacea and Turbellaria.
On the other hand, SSM hosts Ophiuroidea (Echinodermata) — a unique taxon of meiobenthic fauna for
all the Atlantic seamounts studied so far. Of course, we need to keep in mind that only early juveniles of
this taxon may fall into the meiofaunal size class. Juvenile echinoderms rather represent temporary
meiofauna or so-called pseudomeiobenthos (Bougis, 1950), and were possibly not even counted as
meiofauna in other studies.

The reference sites were located at a comparable depth like those from the base of SSM, but at a
distance of 50 or 100 km to the seamount. However, our results showed lower meiofaunal abundance and
diversity (eight taxa less) at the reference sites compared to the samples from the base of SSM. This
contrasts with the results shown by George (2022) for Eratosthenes Seamount and Zeppilli et al. (2013) for
Condor Seamount, where the structure and statistical values of the meiofauna of the seamounts and of the
respective reference sites did not differ significantly. Differences in our study could be related to the
sufficient distance of the reference sites in our study — far enough to be out of the hydrodynamic effects of
the seamount, which can have a distinct effect on the benthic (reviewed in Boehlert, Genin, 1987) and
pelagic communities (Zhao et al., 2023). In general, the lower meiofaunal abundance and diversity may
indicate that deep-sea plains provide lower habitat diversity and food supply for meiobenthic assemblages
as was already discussed by Thiel (1979). However, we also need to keep in mind that only one sediment
core of each reference site has been analysed in this study, with significantly lower abundances compared
to SSM. This could affect the detection of true taxon richness.

Overall, our analysis of the meiobenthic community of SSM seems to provide a certain support for
the hypothesis regarding seamounts as “oases” for fauna. At least we were able to demonstrate a possibly
more diverse and heterogeneous assemblage on SSM compared to the deep-sea reference areas. A closer
look at the species level will certainly provide additional insights into the overall structure of the meiofaunal
community and reveal underlying biogeographical patterns. Studies with a deep taxonomic resolution will
also help clarify, at least for the meiofauna, if ssamounts are indeed “hotspots” of biodiversity, a hypothesis
still under debate (McClain, 2007, George, 2013, George et al., in rev.).
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Supplementary materials

Table S$1. Meiofaunal absolute abundances from the analysed

Senghor Seamount, ordered from north to south. Reference sam

sediment cores of cruise M79/3 to the
les highlighted in grey.

Sample Acari | Amphi- | Annelida + | Bivalvia | Chaeto- | Coel- Cope- Cope- | Gastro- | Gastro- | Isopoda | Kino- | Loricifera | Nema- | Ophiuro- | Ostra- | Rotifera | Sipun- | Tantulo-| Tardi- | Uniden- | Total

poda | Fragments gnatha |enterata| poda poda poda tricha rhyncha toda idea coda cula carida grada tified

Nauplii

825-7 13 7 148 34 1 5 1 890 5 7 18 1129
848-5 40 86 1 2 174 502 105 1 286 13 8 3 26 28 1275
849-2 19 52 2 145 342 83 4 365 18 2 35 17 1084
850-2 62 1 196 3 3 631 989 193 16 869 51 4 74 15 3107
864-2 15 173 803 644 108 47 1455 54 3 54 34 3390
864-7 18 140 2 628 845 128 63 1507 7 48 32 3482
865-4 18 1 386 3 50 848 1134 1 43 43 40 1670 80 1 25 18 4361
866-3 14 309 14 639 909 231 40 41 1476 2 61 1 4 42 21 3804
934-7 4 73 3 406 616 23 13 2 2948 62 2 8 8 4168
934-10 | 11 80 4 471 721 74 13 4 3191 73 15 23 9 4689
1016-3 1 66 137 198 4 2 6 1 4008 12 1 4 3 4443
1016-8 29 117 113 1 7 2 3885 7 1 2 4164
1044-1| 78 184 612 889 307 9 1306 65 5 34 16 3505
1046-5 6 22 309 390 3 6 21 2708 37 3 2 15 3522
1049-2 24 91 142 1 7 7 982 9 1 4 1268

Table S2. Densities (individuals/10 cm?) of the meiofauna from the analysed sediment cores of cruise

M79/3 to the Senghor Seamount, ordered from north to south. Reference samples highlighted in grey.

Sample | Acari | Amphi- | Annelida + | Bivalvia | Chaeto- | Coel- Cope- | Cope- | Gastro- | Gastro- | Isopoda | Kino- | Loricifera | Nema- | Ophiuro- | Ostra- | Rotifera | Sipun- | Tantulo- | Tardi- | Uniden- | Total

poda | Fragments gnatha | enterata| poda poda poda tricha rhyncha toda idea coda cula carida grada tified

Nauplii

825-7 1.9 1.0 213 4.9 0.1 0.7 0.1 128.3 0.7 1.0 26 |162.8
848-5 | 5.8 124 0.1 0.3 25.1 72.4 15.1 0.1 41.2 1.9 1.2 0.4 3.7 40 |183.8
849-2 | 2.7 7.5 0.3 20.9 | 493 12.0 0.6 52.6 26 0.3 5.0 25 |156.3
850-2 | 8.9 0.1 28.3 0.4 0.4 91.0 | 1426 27.8 23 125.3 7.4 0.6 10.7 2.2 |(448.0
864-2 | 2.2 24.9 115.8 | 92.8 15.6 6.8 209.8 7.8 0.4 7.8 49 14888
864-7 | 2.6 20.2 0.3 90.5 | 121.8 18.5 9.1 217.3 10.2 6.9 4.6 |502.0
865-4 | 2.6 0.1 55.7 0.4 72 122.3 | 163.5 0.1 6.2 6.2 5.8 240.8 11.5 0.1 3.6 26 |628.7
866-3 | 2.0 44.6 2.0 92.1 | 1311 33.3 5.8 5.9 212.8 0.3 8.8 0.1 0.6 6.1 3.0 (5484
934-7 | 0.6 10.5 0.4 58.5 88.8 3.3 1.9 0.3 425.0 8.9 0.3 1.2 1.2 ]600.9
934-10 | 1.6 11.5 0.6 67.9 | 104.0 10.7 1.9 0.6 460.1 10.5 22 3.3 1.3 |676.0
1016-3 | 0.1 9.5 19.8 28.5 0.6 0.3 0.9 0.1 577.9 1.7 0.1 0.6 0.4 640.6
1016-8 4.2 16.9 16.3 0.1 1.0 0.3 560.1 1.0 0.1 0.3 600.3
1044-1 | 11.2 26.5 88.2 | 128.2 44.3 1.3 188.3 9.4 0.7 4.9 23 |[505.3
1046-5 | 0.9 3.2 44.6 56.2 0.4 0.9 3.0 390.4 5.3 0.4 0.3 22 507.8
1049-2 3.5 13.1 20.5 0.1 1.0 1.0 141.6 1.3 0.1 0.0 0.0 0.6 182.8
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Meno6eHTOCHI yrpynoBaHHSA niaBogHoi ropu CeHrop

(Kabo-Beppe, TponiyHa CxiaHa ATnaHTuKa)
A. Kineke, K.I'. Feopre, P.P. Tpoxumuyk

MigBoaHi ropm npuBabnioTb JOCNIAHWKIB Yepes iX BUCOKe GIOpiIBHOMaHITTS, BUCOKUIA piBEHb eHAeMi3My Ta iX BNAvMB Ha
noLuMpeHHs Ta esorouito Buais. Ocobnumeo Uikaa porb nigBoaHuX rip y Gioreorpadii Ta dinoreorpadii menodayHn —
MiKPOCKOMIYHUX TBaApWH, WO HE MakTb OUCNEPCIMHUX CTafdil B CBOEMY XUTTEBOMY UMKNi. B uboMy gocnigpkeHHi mu
aHanisyemo ckrag mMenobeHTocHUX yrpynoBaHb niasogHoi ropu Cerrop (Kabo Bepge). Matepian Oye 3ibpaHuin nig yac
Kpyisy M79/3 cygHa R/V Meteor B 2009 poui. [oHHI BigknageHHs 306upanu MynbTUKOPEpoM Ta  dikcyBanm
cdopmanbgerigom. lNoganblle BuAaineHHAa menodayHM MeToooM LIEeHTPUMYryBaHHS 3a pagieHTOM  LUiNbHOCTI Ta
COpPTYBaHHS BULLMX TAKCOHIB BiabyBanock B labopaTtopii. AHani3 BKNoYaB po3paxyHOK LLiNbHOCTI TaKCOHIB OLiHKY iHOEKCIB
Pi3HOMAHITTA Ta MOPIBHSAHHS MoAiGHOCTEN MK AinsHkamu Biobopy npo®. PesynbTaT aHanisy nokasanu, WO ripcbka
BEpLUMHA Ma€e HavBULLe BaraTCTBO TAKCOHIB BMLLOTO piBHA (HT: 11—16), HalHWk4MIA piBeHb oMiHyBaHHS (D: 0.23-0.28) Ta
HaBINbLUy OAHOPIOHICTE YrpynoBaHb MenobeHTocy. Cxunm mMarTb HWKYMIA piBeHb BMaoBoro Garatctea (HT: 12-13),
BULLMIA piBeHb JoMiHyBaHHS (D: 0.5-0.61) Ta HkuniA piBeHb ogHOPIAHOCTI. MigHOKA Mano HalHWk4Ye GaraTCTBO TaKCOHIB
BULWOro piBHS (HT: 10), HanBuwwmi piBeHb goMiHyBaHHs (D: 0.82—0.87) Ta HalnHWmk4y ogHOPIAHICTE. KOHTponbHi AinsHkM 3a
nokasHukamu 6ynm 6inbL nogibHi 4o cxmnis, HiX 40 ocHoBU. NMDS BUABMIO YOTUPU OKPEMI CMINIbHOTU BEPLUNHK, CXUNIB,
nigHidokst nigBogHoi ropu CeHrop, a TakoX MUOOKOBOOHMX KOHTPOSbHUX CTaHUin. BeplunMHa [EMOHCTPYE BUCOKY
HEOAHOPIAHICTb MK CTaHLisSIMK, LLIO MOXe CBiQYMTM SIK PO BMCOKe BiopisHOMaHITTS, Tak i Npo HEOAHOPIAHICTL cepeaoBuULIA.
Cxvnu, NigHeKA Ta KOHTPOSbHI AiNSHKWM MatoTb OinbLU WinbHEe rpynyBaHHS, L0 MOXe CBIig4MTN NPOo HWXKYe GiopisHOMaHITTS
UMX Nokauin, npoTe Hamy Oyno npoaHani3oBaHO MEHLY KiNbKiCTb CTaHUii. Y MOPIBHSAHHI 3 iHWMMW aTnaHTUY4HUMK
niaBoOgHMMK ropamMm Ta OCTpoBamu, NigeoaHa ropa CeHrop nocigae apyre Micue 3a 6aratctBOM MeNo6EHTOCHNX TaKCOHIB
BULLOrO NOPSAKY. 3HAYHO BUWLLi 3HAYEHHS LUINBHOCTI MeNobeHTOCY MOXYTb OyTVM BUKNMKAHI MiABULLEHOK MenariyHo
NEPBUHHOK NPOAYKLIED B akBaTOpii TPONiYHOroO 3axigHoro y3bepexoks Adpuku. B LinoMy, MenobeHTOCHI yrpynoBaHHsi
nigsoaHoi ropn CeHrop, 30aeTbCes, NiATBEPOAXKYIOTh riN0Te3y Npo NiABOAHI ropy Sk 0asu Ansi payHu, AeMOHCTPYH4M BinbLu
Pi3HOMAHITHI YrpynoBaHHs1, MOPIBHAHO 3 rMNOOKOBOAHUMM KOHTPOMBbHUMM AiNsHKaMu.

Knro4doei cnoea: metioghayHa, biopisHomaHimmsi, bioczeozpadpisi, ekonoeisi, Kabo Bepde

HumysaHHs: Kieneke A. J., George K. H., Trokhymchuk R. R. The meiobenthic communities of Senghor Seamount
(Cabo Verde, tropical East Atlantic). BicHuk Xapkigcbkoeo HaujioHanbHO20 yHisepcumemy imeHi B.H. KapasiHa. Cepis
«bionozis», 2025, 45, c. 14-26. https://doi.org/10.26565/2075-5457-2025-45-2

lIpo aemopie:

KiHeke A. — HimeLbknin LeHTp gocnimkeHb Mopcbkoro GiopisHomanitta (DZMB), 3eHkeHGepr am Meep, 3togwtpana 44,
26382, BinbrenbmcradgeH, HimeuunHa; alexander.kieneke@senckenberg.de; https://orcid.org/0000-0001-8180-2483
Feopre K. T'. - HimeLskuit LieHTp AocnimKeHs MOpckbKoro GiopisHomaHiTTst (DZMB), 3eHkeHBepr am Meep, 3ioawTpan 44,
26382, BinbrenbmcradgeH, HimeuwunHa; kai.george@senckenberg.de; https://orcid.org/0000-0001-6464-0099

Tpoxumyyk P. P. — HimeLbknin LeHTp gocnigkeHb Mopcbkoro GiopisHomaHiTTs (DZMB), 3eHkeHGepr am Meep, 3ioaLtpaHs,
44, 26382, BinbrenbmcradeH, Himevumnna; rtrokhymchuk@gmail.com; https://orcid.org/0000-0001-9570-0226

Authors contribution: All authors have contributed equally to this work. / BHecok aBTopiB: Yci aBTOpy 3pobunu
PiBHO3HAYHMI BHECOK Yy MiArOTOBKY Liei poboTtu.

Conflict of interest: The authors declare no conflict of interest. / KoHdonikT iHTepeciB: ABTopu 3asBnsOTb NpPO
BiACYTHICTb KOHONIKTY iHTepecis

Use of Artificial Intelligence: The authors certify that no generative artificial intelligence tools were used in the conduct of

the research or in the preparation of this manuscript. / BukopucTaHHs LWUITYy4YHOro iHTeneKkTy: ABTOpU 3acBiavytoThb, LO Mif,
Yac NpoBeLEHHs AOCMIIKEHHS Ta NIATOTOBKM LIbOTO PYKOMUCY reHepaTUBHUIA LUTYYHWIA iHTENEKT HE BUKOPVCTOBYBABCS.

IModano do pedakuii: 01.10.2025 / MNMpopeueH3oeaHo: 11.11.2025/ MpuliHasmo Ao Opyky: 16.12.2025/ OnpuntodHeHo: 31.12.2025

Cepisi «Bionorisiy, Bun. 45, 2025
Series “Biology”, issue 45, 2025 ISSN 2075-5457 (print), ISSN 2220-9697 (online)



