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Lenpto paboThl SIBISIIOCH MPOBEACHUE YHMCICHHOTO aHAIM3a BIUSHUS BKIIOYEHHS
JUINIEKTPUIECKUX BCTABOK M JIOMOJTHUTENBHBIX IUIMHIPUUECKUX TIPErpaj B MOJIOCTh
UIMHIPUYECKUX aHTEHH C KOHEYHBIM YHCIIOM IIPOJONBHBIX IIeNel Ha TEXHUUECKUE
XapaKTePUCTUKU OIHCAHHBIX YCTpOHCTB. B pabote it peanusanuu Ienu ObLIn
HCIIOJIE30BaHbI MaTeMaTHIECKUE MO paccesHus E-TTospi30BaHHbBIX BOJH Ha 0ase
TPaHNYHBIX CHHTYJIPHBIX MHTETPANBHBIX ypaBHEHMH. J(MCKpeTH3anus MOCTPOSHHBIX
MHTETPAIBHBIX YpaBHEHHH IIPOBEICHA IO METOIY AUCKpEeTHBIX ocobeHHOcTed. C
UCIIONB30BaHUEM  IIOCTPOCHHBIX JHUCKPETHBIX Mojenedl ModydeHsl rpadukn
3aBHCHUMOCTEH IIONEPEeuHHKOB IOJHOTO PAcCesHUs OT pa3Mepa IOMOTHHUTENbHOI
nperpaabl U 3alOJHEHUS] TOJOCTH  AHTEHHBl  JUANIEKTPUKAMU  Pa3lIUYHOI
MPOHULIAEMOCTH.

Knrwuegvie cnosa: cuneynsproe unmezpanvHoe ypaeHeHue, weieéas AHMEHHA, YUCIEHHOe
peuienue, 3a0a4a OuPpaxkyuu.

Mertoro 1i€i po6oTu Oyno TPOBEIACHHS YHUCEIBHOTO AaHaNi3y BIUTUBY BKIFOUCHB
,Z[ie.]'IeKTpI/I‘-IHI/IX BCTAaBOK Ta O0JaTKOBHUX I_II/IJ'[iH,Z[pI/I‘-IHI/IX nepeuKos 'y HOpO}KHI/IHi
OWIHIPUYHAX aHTEH 3 CKIHYCHOI KUIBKICTIO TOAOBKHHUX IIUIMH Ha TEXHIYHI
XapaKTePUCTUKH OIMUCAHMX MpHCTpoiB. B poboTi mnsg peamizamii mim  Oymm
BUKOPHCTaHI MaTeMaTH4Hi Mojemi po3CisHHA E-momspm3oBaHMx XBWiIb Ha 0a3i
TPaHNYHHUX CUHTYJSIPHUX IHTErpajbHUX piBHAHB. Jluckperusaimiss moOyqoBaHHX
IHTETpAIPHUX PpIBHAHb TMPOBEACHA 3a METOAOM JUCKPETHHX OCOOIMBOCTEH.
BukopucroByroun moOynoBaHi JUCKpPETHI MOJENl OTpUMaHi Tpadiké 3ale)XKHOCTEH
TMOTNIEPCUYHUKA ITOBHOI'O pO3Ci${HH5{ Bi[[ pOSMip )JOI[aTKOBOT TNEPEUIKOAN Ta 3allIOBHECHHA
MOPOYKHUHHM aHTEH JieJIeKTPUKaMH Pi3HOI IPOHUKHOCTI.

Kniouosi cnosa: cunzynapue inmezpaibHe piHAHHS, YUCETbHULL PO36 30K, 3a0ay4ad OUppakyii.
The aim of the work was carrying out the numerical analysis of influence of dielectric
insertions and additional cylindrical obstacles in the cavity of cylindrical antennas with
a finite number of longitudinal slots on technical characteristics of the described
devices. For this aim implementation, in this work, mathematical models developed on
the base of boundary singular integral equations were applied to E-polarized plane
wave scattering. Discretization of the derived integral equations was carried out by the
method of discrete singularities. With the help of the obtained discrete models, the
authors have plotted the graphs for dependency of total diffusion cross-section on
additional obstacle size. Computations were done for different antenna cavity fillings.

Key words: singular integral equations, numerical solution, slot antennas, diffraction problem.

Introduction

Derivation of mathematical models in order to calculate different types of antenna
devices is an important part of contemporary research in the field of high frequency
radioelectronics. Various appliances that scatter and transmit electromagnetic waves
can be modelled with open conducting screens of different configurations. Such
devices include numerous aperture and flush antennas as well as leaky wave ones.
Such slot antennas do not perturb aerodynamics of the objects they are installed on.
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Aero- and hydrodynamic peculiarities of submarines, planes, rockets, and other
mobile objects require these very structural features of antennas [1-7].

The hollow structure of antennas in earlier-built models does not fully describe real
objects. Consequently, derivation of models for slotted antennas filled with dielectric
and ones containing additional reflecting structures in their cavity draw the models
nearer to real devices [2-5].

The methods, worked out recently by Shestopalov V.P., Nosich A.l., LevinL.,
Ziolkowski R.W., Voytovich N.N. to calculate technical characteristics of cylindrical
structures with circular cross-section and longitudinal slots have a number of
shortages [1,2,6]. These methods are applicable to the structures that have one slot
only, it is impossible to extend their usage to a greater number of slots.

The discrete vortex method was used in the works of Belocerkovskiy S.M.,
Lifanov I.K., Dovgiy S.A. for calculations in applied aerodynamics. Yu.V. Gandel,
V.0. Mishenko, V.D. Dushkin, and their students used the method of discrete
singularities to solve problems of diffraction on multislotted arrays and for
electromagnetic field computation in waveguides. The same tools have been
successfully used to solve a set of problems [8-10]. In the author’s works fulfilled
under scientific supervision of Yu.V. Gandel, [8-9], the method of discrete
singularities was used for problems related to wave diffraction on hollow cylinders
with multiple slots. In these works, the results of near and far field computation for the
structures with different number of slots are discussed. As it was said before, of
special interest are the filled structures; and introduction of an additional reflector will
allow to extend the line of structures under estimation. This was the reason to carry
out the work in attempt to obtain evaluation formulas for analysis of dependence of
total diffusion cross-sections on different coefficient of dielectric permittivity and on
the size of the introduced additional reflector.

The statement of a boundary value problem for Maxwell's equations
Let us outline the geometry of the problem. We will use the following notation: the

slot traces on cylindrical surface, that are the arcs Sg, of the external circle with the

radius R, centered at the origin of the coordinates, will be denoted as (aq : bq) (fig. 1-
2). Then

L=Ul@i Bi), cL=[-mx\L.
1=
The stationary case E(x,t)=E(x)e™, H(x,t)=H(x)e™' was considered
(monochromatic waves with angular frequency ®). The wave vector of a plane wave is
directed perpendicularly to the generatrices of cylinders. In the outer cylinder, several
longitudinal slots are cut. The space between the cylinders is filled with dielectric.
The fields in the inner and in the outer part of the considered electrodynamic
structure satisfy the Maxwell's equations [6]:
rotE =iwwH, rotH =—-iweE )
It is assumed, that electrical-field sources are absent, thus the following condition
is satisfied:

-
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divE=0. (2
Over the perfectly conducting surfaces the following boundary condition is true:
E(r,p)n|r=r, =0, |E(r,p),n|r=R, =0. 3
ECr.ohnlg, =0 ECoInl—r, ©
here n is the outward vector normal to the cylindrical surfaces.
¥
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Fig.1. Cross-section of a cylindrical antenna _ ) o
with a finite number of longitudinal slots, Fig.2. Section of a cylindrical metal structure
circle in the section filled with dielectric

Considering the case when electromagnetic field does not depend on the coordinate
Z , we obtain the following two-dimensional problem:

The system of Maxwell's equations (1), falls into two independent subsystems
[6,8], one of which can be reduced to the Neumann boundary value problem for
Helmholtz equation (H-polarization); and the other one to the Dirichlet boundary
value problem for Helmholtz equation (E- polarization). For both components of the
total field, it is enough to find a single function, which is the longitudinal component
of the magnetic field H,(r, ) or electric field E,(r,¢), correspondingly. One of the

components found, another can be restored uniquely.

A mathematical model for the Dirichlet problem
Let us consider a E- polarized wave. In this case the component E, (r, o) meets the

following conditions:
— Helmholtz equation
AE, (1, )+ k?E, (r,0)=0, 4)

here k? = g,ua)z;

— boundary condition
E,(Rz,¢)=-Ep;(R2,0), €L, ®)

ierOSgo, Kk = «

here the given incident field Eg,(r,¢)=¢
c

, Cis the speed of light in

vacuum;
— Sommerfeld radiation condition and Meixner’s edge condition
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Ok, (r'¢)—ikEz (r,¢)= ({i r—o; j[k2|EZ|2 +|VEZ|2JdS <o (6)

or \/FJ o

for any bounded area Q R?.

As for the Dirichlet problem u(r,)=E,(r,¢), let us denote limitations for the
sought function u(r,¢) over the inner (R, <r <R,) and the outer (r > R,) areas of
the ring by u*(r,¢) and u~(r,¢), correspondingly; and for Neumann problem

u(r,@)=H,(r,p). If the functions u*(r,p), Ry <r<R, and u=(r,@), r>R,
satisfy the Helmholtz equation, and the so-called matching conditions are fulfilled:

. o _
u (r,(pXr: 2 =u (r’(DXr_RZ’ peCL, @)
and
aut(re) _ou(re) =
T | o | cPeCh ®)
r:R2 r:RZ

then there exists such function u(r,¢), which satisfies the Helmholtz equation in
the area {r>R;, p€[0,27)} excluding union of arcs L of the circle Sg,; and

u(r,@)=u"(r,p) for R, <r <R, while u(r,@)=u"(r,p) for r>R,.

Let us write down the paired Fourier series for the electric field
component Ez(r,(o). Acting in the same way as in [8], let us write down the Fourier
representations for the fields:

E; (0. 0)= :iCrTVnE(Wp)ei”(", pelRy,Ry], 9)
E(+ ). Inlk RNk o) Yok Ry Bk o)
nere Vn (k p)_ Jnr(k+R1){nr(k+R2)—Yn(k+R1)Jn(k+R2)'

E; (0.0)= SCaHPk k™. o>y, (10)
N=—o0
here J,(z), Y,(z), H®(z)are the Bessel, Neumann and Hankel functions (1*
kind) of order n.
Using the matching condition (7) and the boundary conditions (5) we derive the
formula for the Fourier coefficients:
ci =CiHOK R,y )=Cy. nez. (11)
The modified paired Fourier series with the introduced coefficients C,, is as
follows:
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> B,e!" =0, pel

=" (12)
> Bnlne™ =—Eq, (Ry, 0), peCL

N=—0o0

: W' (-
here B, =Cp| k*V,E (k*Rz)—k_ H”l K Ry , neZz,
HOK R,
' -1
. £ H® (kR . .
I's =|kV, (k+R2)—k‘ " 20|, and Iy has the estimation
HWK R,

E A 1 k™R,
I'y ——=0| — |, where Aj =——*%
=i =ofiz e 2=
Let us rewrite the second equation from (12) in the form of equality:
o0 B . 0 1 .
MY ﬁemw +Bolo+ X Bn(rn - Alﬂ]e”w =-Eq;(R2,0), peCL, (13)
N=—c N=—o0
n=+0 n=+0

Acting in the same way as in [8-9,11], let us introduce an unknown function

o0 .
vip)= > Bne'™, with which all the unknown coefficients are expressed as

N=—00
B, :2i jv(¢)e_i”¢d(p. Meixner’s edge condition (6) will be fulfilled if restriction
7oL
of the function v(@) over the arc (aq ,,Bq) is written as
wq ()
v(6 = d
ag.) e —0f0-aq)
where wq (6), 0 € g, By is a Holder continuous function.

In the work [9], with the help of parametric representation of integral operator with
logarithmic kernel, the equation (13) was transformed into the following integral
equation:

y aq<0<ﬂqa (14)

_ﬁmﬂq g|g_ d9 _&mﬂq H d@ B
w2 O e 2 20 [l a)
. O0-
=T N e N =N R

=—u0(r,(p)|r:R2, peCL. (15)



30 Cepis ¢MaT.mogentoBaHHs. IHhopMaLliiHi TexHonorii. ABTOMAaTI30BaHi cUCTEMM ynpaBniHHs), BUM. 32

Differentiating the equation (15) with respect to parameter t,, we obtain a singular
integral equation. CL is a union of disjoint intervals. Let us introduce the functions:

By —« Pq+a

gqi(—l,l)—>(aq ﬁq):t|—>9= qz 9¢429 70

Wq(g) 2 ( (
JBq —0)0-aq) " fq g V1-t2

Such substitution transforms the integral equation over the system of intervals into
the system of integral equations over the standard interval (-1,1). This system of

singular integral equations is written as:
A 17q(t) dt A Bq—aq O 1 \ 1 dt
Ayp. et > [ ot
s _jlt—to Vi-t2 7 2 p—1_'f1 " gp(t)-gqlto) 112

p=q

it [ oabial) 2 ] a
+—MZI7D({ tg=* 2 : gp(t)—gq(t)} 1

taking into account that

) gq(to)) qu(t’to)-

+

'[2

L1 d dt 1 d
= j j K pq(t.to) L) 7/p(t) == | fq(to)—to, q=1...m. (17)
EF=15) \/1—t0 \/1—t

At that the integral vpj /4 ) should be understood in the sense of the
t-t \/1 t?

Cauchy principal value.
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Discrete mathematical model

In course of discretization of the integral equation (16) and the additional condition
(17), the unknown function y, (t) is substituted with an interpolating polynomial, and
the integrals within the equation are replaced with interpolatory quadrature formulae

[10], but first the equation kernels should be substituted with their interpolating
polynomials having the same nodes, as it was done, for example, in [8].

N
Ny 7gl ti q)
B U q(' a1 N N
Ng i:ltiNq—t(')\lq p= 1Np| -1 J .

Niq[zran— In Fa g J%yq(ti’\lq)+ (18)
1
+pZ pngpq( j (in):;[lfq(tO)\/%

here j=1..,Nq -1, g=1..,m, and the functions qu(tin,t(;\quj, qu(tin)
are expressed in terms of ones described above (see for example [8]), and

N 2k —
tk =CO0S

17[ are Chebyshev polynomial zeros of the | type and t(')\'j :cos%Z are
Chebyshev polynomial zeros of the 1l type.

Having solved the linear equation system (18), we find the values of the
interpolating polynomial in the points tll\‘ with prescribed accuracy. Unknown
coefficients C, are calculated with the help of this formula:

E mNg —ing (thj
E a{ k
Ch=Bnly = I ZZVq(tk j
q=1k=1
Let us derive the expression for the E- polarized wave power scattered in space:

oc=Re jE roH,(r.o)de, (19)
0
here r is the radius of any cylindrical surface that encloses the screen.

Using the representation of the field component E, (r, (p) [8], and the relationships
among the components in Maxwell's equations, we obtain the component H(p(r, go) of
the field in the following form

H,(r, ¢)=— ZkC H (kr)e”"/’ (20)
i

N=—00
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Substituting expressions for the components H ,(r, ) (20) and E, (r,¢) into the
power equation (19) and utilizing the H,(r,¢) property of being a complex
conjugate, we obtain:

—E:ii : Z qu( j_mgq(t?qj, nez (21

q=1"q j=1

HEE j(ka)

Using the found values of interpolating polynomial as the unknown function y (t)

values, we find the power, scattered into space.
Now we can construct graphs of functional characteristics: power, directivity
diagram for the component of electric field, and also the field in the near zone.

The results of numerical calculations

As the result of calculations (21), graphs were obtained for total diffusion cross-
section dependency on dielectric characteristics of inner filling of the antenna.
Besides, the radius of the inner cylinder was changing. As an example, see figures 3-5
that show the graphs for plane wave incidence onto the structure with three slots in the
outer cylinder.
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Fig.3. Normalized power for incident wave number k=1



BicHuk XapkiBcbkoro HawjoHanbHoro yHisepcuteTy iMeHi B. H. KapasiHa, 2016 33

1 1 T T u T
0o RIS 0.9t ;
: ‘ =) 15 ; P
R=0.75 ol R=0.25 L |RF0.7S
0.8k 1o« : ‘ : ;
RI——{_} 2 |
07 I| 07 B
o || o | RS i
—= 06 || = 06 P
1 |
_ | . o
‘%; 05t :| ‘%;0.5— P
= | E :l |
Z, 04f I: 204 |I | |l
03k ||I | 03 | | o ||§
| | T
R A
(RN L
o1} JL . || o1} \ || |II||| 1l
| o
0 I » b-/—.fuk-b-'\_ Jl,ﬁ__j.l 0 L|LL- i ML/\
4 G g + 10 12 0 [ + 10 20
Fig.4. Normalized power-for incident wave Fig.5. Normalized power-for incident wave
number k=4 number k=6

Summary

In the work, the formula was derived for numerical evaluation of total diffusion
cross-sections of plane waves scattered on cylindrical structures with a finite number
of longitudinal slots, cylindrical reflecting structure coaxial with the outer cylinder,
and filled with homogeneous dielectric inserts.

On the basis of the obtained formula, analysis of diffracted field characteristics in
dependence on the coefficient of dielectric filling was performed.

The influence of the additional reflector in the antenna cavity as well as the
dependence of characteristics on the inner cylinder size were shown.

In the future, it is interesting to perform similar analysis for H-polarized wave and
the structures with impedance boundary condition.
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