Homogenization of the diffusion equation in domains with the fine-grained boundary with the nonlinear boundary Robin condition

Л. О. Хількова

Keywords


усереднення; дифузія; умова Робена; квазірозв'язки.

References


Берлянд Л.В., Гончаренко М.В. Осреднение уравнения диффузии в пористой среде со слабым поглощением // Теория функций, функциональный анализ и их приложения, 1989.-- № 52.-- С. 113-- 122.

Cabarrubias B., Donato P. Homogenization of a quasilinear elliptic problem with nonlinear Robin boundary condition // Applicable Analysis: An International Journal, 2012.-- Vol. 91, №6.-- P. 1111-- 1127.

Chourabi I., Donato P. Homogenization and correctors of a class of elliptic problems in perforated domains // Asymptotic Analysis, 2015.-- № 92, P. 1-- 43.

Chourabi I., Donato P. Homogenization of elliptic problems with quadratic growth and nonhomogenous Robin conditions in perforated domains // Chinese Annals of Mathematics, 2016.-- Vol. 37B, №6.-- P. 833-- 852.

Cioranescu D., Donato P. On Robin problems in perforated domains //Mathematical sciences and applications, 1997.-- № 9.-- P. 123-- 135.

Cioranescu D., Donato P., Zaki R. Asymptotic behaviour of elliptic problems in perforated domains with nonlinear boundary conditions // Asymptotic Analysis, 2007.-- № 53.-- P. 209-- 235.

Conca C., Diaz J., Linan A., Timofte C. Homogenization in chemical reactive floes // Electronic Journal of Differential Equations, 2004.-- № 40.-- P. 1-- 22.

Conca C., Diaz J., Linan A., Timofte C. Homogenization results for chemical reactive flows through porous media // New Trends in Continuum Mechanics, 2005.-- № 6.-- P. 99~-- 107.

Conca C., Diaz J., Timofte C. On the homogenization of a transmission problem arising in chemistry // Romanian Reports in Physics, 2004.-- Vol. 5, №4.-- P. 613-- 622.

Goncharenko M. The asymptotic behaviour of the third boundary-value problem solutions in domains with fine-grained boundaries // Mathematical sciences and applications, 1997.-- № 9.-- P. 203-- 213.

Mel'nyk T.A., Sivak O.A. Asymptotic analysis of a boundary-value problem with the nonlinean multiphase interactions in a perforated domain // Ukrainian Mathematical Journal, 2009.-- Vol.61, № 4.-- P. 494-- 512.

Mel'nyk T.A., Sivak O.A. Asymptotic approximations for solutions to quasilinear and linear elliptic problems with different perturbed boundary conditions in perforated domains // Asymptotic Analysis, 2011.-- № 5.-- P. 79-- 92.

Timofte C. On the homogenization of a climatization problem // Studia Universitatis <>, Mathematica, 2007.-- Vol.LII, № 2.-- P. 117-- 125.

Timofte C., Cotfas N., Pavel G. On the asymptotic behaviour of some elliptic problems in perforated domains // Romanian Reports in Physics, 2012.~-- Vol.64, № 1.-- P. 5-- 14.

Berlyand L.V., Khruslov E.Ya. Competition between the surface and the boundary layer energies in a Ginzburg-Landau model of a liquid crystal composite // Asymptotic Analysis, 2002.-- № 29.-- P. 185~-- 219.

Марченко В.А., Хруслов Е.Я. Усреднённые модели микронеоднородных сред.-- К: Наукова думка, 2005.-- 551 с.

Cabarrubias B., Donato P. Existence and Uniqueness for a Quasilinear Elliptic Problem With Nonlinear Robin Condition // Carpathian Journal of Mathematics, 2011.~-- Vol.27, № 2.-- P. 173-- 184.

Хруслов Е.Я. Асимптотическое поведение решений второй краевой задачи при измельчении границы области // Математический сборник, 1978.~-- Т.106(148), № 4(8)}.-- С. 604-- 621.

Владимиров В.С. Обобщённые функции в математической физике.-- М.: Наука, 1979.-- 320 c.


Refbacks

  • There are currently no refbacks.


vestnik-math.univer.kharkov.ua