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Generalized Fup-functions are considered. Almost-trigonometric basis theorem
is proved. Spaces of linear combinations of shifts of the generalized Fup-
functions are constructed and an upper estimate of the best approximation
of classes of periodic differentiable functions by these spaces in the norm of
Lo[—m, m] is obtained.
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Bpucinal. B., Makapiues B. 0. Anpokcumariiiini BjacTuBocTi y3arajb-
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JHITHUX KOMOIHAINH 3cyBiB y3araabHeHnX Fup-QyHKILi i oTpruMaHo BEPXHIO
OIIIHKY HANWKpAIIOro HaOJIMXKEHHs IMMU IIPOCTOPAMHU KJIACIB IE€PIOJAUIHUX
mudepeHnniioBannx GyHKIi 38 HOpMO Lo[—, 7.
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Introduction

Construction and investigation of compactly supported functions such as
splines and wavelets is an intensively developing area of mathematics. Various
systems of functions with a compact support are widely used in numerical
methods, mathematical physics, approximation theory, digital signal, image
processing etc. In particular these systems are used for numerical solution of
differential equations. Notice that the function, which is a solution of some
equation, is often infinitely differentiable or has high degree of smoothness. Hence,
the problem of construction of the function space L that combines the following
properties is of interest:

(i) all functions from L are infinitely differentiable (this property is important
for approximation of smooth functions);

(ii) in the space L there exists a basis that consists of compactly supported
functions (for example, this property makes it possible to construct effective
algorithms of solution of some differential equations);

(iii) the space L has good approximation properties.

Consider in detail the last property. Let X be a linear space supplied with a
norm || - || x. Denote by A some subset of X. Let L be a subspace of X such that
dim L = N. By

Ex(A,L) = sup inf ¢ — fllx
peAfEL

we denote the best approximation of the set A by the linear space L in the norm of
X. It can be said that L has good approximation properties, if there exists small
e > 0 such that Ex(A, L) < e. At the same time it is interesting, if there exists
some other linear space V' C X such that dimV = N and Ex(A,V) < Ex(A, L)
(this means that V' has better approximation properties than L). Therefore the
value of

dy(A, X)= inf FEx(AV

N( ) ) dinil‘}:]\f X( ) )
is of interest. We note that dy (A, X) is the Kolmogorov width [I].
Let {Ni}72, be a sequence of positive integer numbers.

Definition 1 The sequence of spaces {Ly}p-, is extremal for approzimation of
a set A in the norm of X, if dim Ly = Ny, and Ex(A, L) = dn, (A, X) for any
ke N.

Definition 2 The sequence of spaces {Ly}re is asymptotically extremal for
approximation of a set A in the norm of X, if dim Ly = Ny for any k € N
and Bu(A L

X R .
k—o0 de(A, X)
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We say that spaces {Lj} have good approximation properties, if the sequence
{Ly} is extremal or asymptotically extremal for approximation of A in the norm
of X.

In [2, 3, [4], the spaces, which satisfy properties (i) — (iii), were introduced.
Consider in detail main results of these publications.

Consider the function

it sin? (st(2s) %)
mups(x) = / H s2t(2s) ksm((Qs)_k)dt’

where s € N.
For the case s = 1 the function mups(z) is equal to well-known Rvachev

function
Sln t2
o= [ e T8l
7% :

which is a solution with a compact support of the functional differential equation

Y () =2(y(2x + 1) — y(2z — 1)).

As a solution of this equation the function up(x) was introduced in [5] (see aslo
[2] and [3]).

The function mups(x) for the case s > 2 was constructed in [6].

For any s € N the function mups(z) combines the following properties:

1) supp mups(x) = [—1,1];

2) mups(z) € C*(R);

W

ffooo mups(x)dz = 1;

)
)
3) the function mups(x) is not analytic at any = € [-1,1];
)
5) mups(z) is a solution of the equation

S

Y (x) = Z(y(Qs:B +2s—2k+1) —y(2sx — 2k + 1));
k=1

6) Hmupgn) (x)”c[ " = 27(2s5)"(=1/2 for any n = 0,1,2,....

For the case s = 1 the properties 1) — 6) were proved in [5] (see also [2]). For
the general case these properties were proved in [6] (see also |4} [7]).
Let MUP;,, be the space of functions ¢ (z) of the form

z) = Zk:ck - mups <x — (2/;)n> xe[-1,1]
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and ]\//fﬁs’n be the space of functions ¢(x) such that

=S (2 ) e e

k
and ) (—7) = pU) () for any j = 0,1,2,....
Theorem 1 ([4]) For any n = 0,1,2,... there exists the set of coefficients
{v;}jez such that
Zvj S mups <$ — ‘7> ="
, (2s)"
JEZ

This means that MU P;,, contains all polynomials of order not greater than

Further, consider the function

oo . ¢ n
1 , sin ( . n)
Fmupg () / ette # F, <t) dt,

27r_OO R (2s)"
where s € N, n = 0,1,2,... and F4(t) is the Fourier transform of the function
mups ().
It was shown in [4] that Fmups,(z) € C*°(R) and
n+ 2
Fmupg ,(z) =0 for |z| > 22s)"

(for the case s = 1 these properties were obtained in [3]).

Theorem 2 ([4]) The system of functions

. 2(2s)"+n+1
7 n -+ 2
F - 1
{ P ( @5 +2<2s>n>}j21

is a basis of the space MU P; ,,.

Combining this theorem with theorem [T} we see that any polynomial of degree
at most n can be expressed as a linear combination of shifts of the function
Fmupg ,(z).
Theorem 3 ([4]) The system of functions {11(x),¥2(7), ..., e (x)} constitutes
a basis of the space MUP ,, where

T k n+2

k n+2
257 220y
k n n+2
(25)™  2(2s)"

—I—qups,n<x— +1>,k::1,...,n—|—1,
T

Yi(z) = Fmupsp (a: — + 1> Jk=n+2,...,2(2s)".
T
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It follows from this theorem that dimension of 1\7(773&” equals 2(2s)".
Let us remark that for the case s = 1 theorems (1| —[3| were obtained in [3].

Further, we need some notations. By W[  denote the class of functions
g € C["_mr] such that ¢ (—7) = g®(x) for any k = 0,1,...,7 — 1 and

||9(T)HC([—W77@) < 1. Let WQ’" be the class of functions g € C[T:ﬂlﬂ] such that the

equality g®) (=) = g% (7) holds for any k = 0,1,...,7—1, g~V (z) is absolutely
continuous and [|g(") [Fa——

Theorem 4 ([3], see also [2]) We have

. Eo( ) (Wi, MUP1 ) B
11m —

=00 (oni1 (fWVgO, C([_7T7 7‘—]))

P

In other words, spaces ﬁn = MUP,, are asymptotically extremal for
approximation of W in the norm of C([—7,x]).

Theorem 5 ([2]) There exists n(r) such that

Epyonm(W3, MUP: ) = dgur (W3, Lo[—7, 7))
for any n > n(r).

Therefore ﬁn is extremal for approximation of functions from the class WQ"
in the norm of the space Lo[—, 7.

Theorem 6 ([4]) For any s > 2 the following equality holds:

lim ELQ[—w,w](W57 MUPs,n) —1
n—00 dQ(Qs)n (WQT, LQ[—ﬂ', 71'])

—_——

This means that spaces MU Pj ,, are asymptotically extremal for approximation
of W{ in the norm of Ly[—m, 7]

We see that the functions mups(z) (in particular, the function up(z)) and
Fmupg () have a number of convenient properties. Therefore these functions
have applications to wavelet theory [8, O 10, 11, 12, I3, [14], digital signal
processing |15, [16], numerical methods and numerical modeling [17, [I8], 19] 20]
(note that a comprehensive survey also can be found in chapter 2 of [21]), the
theory of generalized Taylor series [2, [7, 1], 12} 22} 23, 24, 25] etc.

We note also that the growth rate of the dimension of MU P ,, and m sn 18

a disadvantage of these spaces. Indeed, for any s € N the value of dim MUP, ,, =
2(2s)™ increases exponentially. Our goal is to construct the space of functions that

does not have this disadvantage and has all advantages of msm.
Let f(z) € L2(R) be a function such that
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1) supp f(z) = [-1,1],
2) f(x) is an even function,
)

f
3) f(z) >0 for any x € [—1,1],

1) [ f(z)dz = 1.

By F(t) denote the Fourier transform of this function.

Definition 3 ([26]) The function

17, /sin(t/N)\™
m - ite [ P \Y/ AV F(t/N ,
Prnta) =5 [ et (P (1/N) dt
where F(t) is the Fourier transform of f(x), N # 0 and m € N is called a
generalized Fup-function and f(x) is called its mother function.

Here we use the term "mother function"just as the term "mother wavelet"is
used in the theory of wavelets.

It can be seen that the generalized Fup-function is a generalization of the
function Fmups ().

The aim of this paper is to investigate the best approximation of the class WQ”
by the spaces of linear combinations of shifts of the generalized Fup-functions in
the norm of the space Ly[—m,7].

This paper is organized as follows. In section 2, we introduce and prove
the almost-trigonometric basis theorem. In section 3, we construct the spaces of
shifts of the generalized Fup-functions and using the almost-trigonometric basis
theorem, we obtain an upper estimate of the best approximation of W3 by these
spaces in the norm of Ly[—m,7]. In the last section, we analyze the results of this
paper and consider some open problems.

Actually, in this paper we introduce a new method of construction of locally
supported functions with good approximation properties.

Further, we assume that

£l = 1l o[ and (f, ) = / F(@)g(x)da.

Almost-trigonometric basis theorem

Let N be an arbitrary even natural number.
Denote by Vi the space of functions f(z) € Lao[—m, 7| such that

N/2-1

f(z) = Z (ap - vNp(x) + bp - wNp(T))

p=0
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where
uno(z) =1,
UNp(T Z TNk - Cos((p+ EN)z) + gy pk - cos((N(k + 1) — p)x)) (1)
k=0
and
wnp(@) =Y (snpk - sin((p+ kN)z) + tapp - sin(N(k +1) = p)z))  (2)
k=0
forp=1,2,...,N/2 -1,
> N N
wn,o(z) = Z <yN7k - cos <(2k: + 1)1’) + zZn i - sin ((Qk‘ + 1)x>> . (3)
— 2 2

"Npo = SNpo = 1 forany p=1,2,...,N/2 — 1. We assume that series in —
are convergent in Lo[—m, 7].

We shall say that the system of functions {vy p, w va};\f:/(z)—l is an almost-tri-
gonometric basis of the space V.

In this section, we obtain an upper estimate of the best approximation of the
class W3 by the space V in the norm of Lo[—m, 7]

Theorem 7 If there exists m € N, M > 0 and functions p1, @2 such that
(i) 1, w2 are positive, increasing and differentiable on [0,1/2];
(i) ¢1(1/2) < 1, 2(1/2) < 1;

(iii) m+1>r;

(iv) for anyp=1,2,...,N/2 —1 the following conditions hold:

) P 2(m+1) S (P
dNpo = <N —p) ¥1 (N) ) (4)
2(m+1)
2 P
N,p,0 (N p) 2 (N) ) (5)
(v)
s 2(m+1)
> (R + den) < (5) , (6)
k=1
- (m+1)
>~ (K + i) < (%) (7)
k=1

foranyp=1,2,...,N/2 —1;
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then
N N\ "
ELQ[—W,W} (WQ’,‘? VN) < <2> 1 +e¢, (8)

where

M? M VoM

&€= 24m+3 + 22m+1 + om+r+1 :

Proof. To prove this statement, it is sufficient to obtain the following
inequality:

. N\ M?2 M vV2M
wlenéN If —wl < <2> \/1 + 94m+3 + 92m+1 + omtri1 (9)

for any f € WQ” .
Let f(z) be an arbitrary function from the class W{ .
By construction, the space V,, contains all constant functions.
__ Let f be a non-constant function. It follows from the definition of the class
W3 that
0 <[lf™) < 1.

Consider the Fourier series expansion of the function f:

f(z) =ap+ f: <En - cos(na) + by, - sin(na:)) .

n=1
Let g(z) = f(x) — ap. By the above
. f ol = inf o —
Jof I —wl = inf llg—wl

= |lf™| < inf [|¢ —
., e = < nf 1¢ -l

where ((z) = Wg(x)
Notice that
IST = 1. (11)

The function ¢ can be represented in the following form:

N/2

((x) = (Onp(@) + pnp(x))

where

O @) = Z(a’”’“’v cos<<p+kN>x>+‘W-cos<<N<k+1>—p>x>)
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and

3 by sin T b(kH)N P sin —plx
pp(T) = 0<|’fr)|| ((p+kN)z) + 0] (N(k+1)—p) ))

forp=1,2,...,N/2 -1,

o~ A(k41)N/2 N
Brxate) = 30 M o (-4 1))
k=0

X by . (N
pn,Ny2(T) = Z W - sin <2(kz + 1)3:) .
k=0

Further we (n)eed some no(tz)itions.
Let ¢p = 0x, I, dp = [l I,

1 - 1 )

o Onp(2), if ¢p # 0, Ly p(x), if d, #0,
folm) =g @ 70 P and  gy(z) =< @ P P

Onp(x), ifc, =0 punp(z), if d, =0

forp=1,2,...,N/2.

In these notations,

N/2
(@) =D (epfp(@) + dpgp(x)) and || £ = llgi”] = 1.
p=1

In addition, from it follows that

N/2

> (G+d) =1

p=1

Therefore, to prove inequality @ for any non-constant function f € Wg , it is
sufficient to obtain an upper estimate of in‘ﬁ |¢ — w||, where
weVy

N/2

((z) = Z(Cpfp(x) + dpgp()),

p=1
Z apkN - cos((p+ EN)x) + agpy1yn—p - cos((N(k + 1) — p)m))
k=0

and

Z prkN - SIn((p + kN)x) + be1yv—p - sin((N(k +1) — p)x))
k=0
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forp=1,2,...,N/2 -1,

> N
Inpe(x) = Za (k4+1)N/2 * COS <2(k‘ + 1)$> ,
k=0

gny2(z) = Z b(k+1)ny2 - Sin <2(k + 1)33) )
k=0

Hfm _ H (r) (12)
forp=1,2,...,N/2,
N/2
2 2
Z (Cp + dp) =
p=1
Let us introduce some notations.
For any p=1,2,...,N/2 —1 let
(fp, N p) (9p, WNp)
ap1 = — ———— < UN , Qp2 = — 7 Wwp,
P Iy (UNps UN p) P b I (WNp, WNp) P
and anyz1 = || fnsells anyez = llgnsell-
It is easily shown that
inf — < ;. 13
wlenVN ¢ —wl < p:1,...1,111\72}}2<,j:1 o AP (13)

Consider ap j for p=1,2,...,N/2 and j =1,2.
1. For the case p = N/2, we have

) 00 ) N —2r 00 N 2r
N1 =T Z Ak+1)N/2 = <2> ™ Z Ak+1)N/2 ( >
k=0 k=0

N —2r o8] N 2r —2r . 2
< <2> Ty <(k + 1)2> hirynye = <2> Hfj(\r/)z
k=0

If we combine this with , we get aN/2 1 < (N/2)
By the same argument aN/2 , < (N/2)72

Hence,
N —2r
O‘?V/Q,j < <2> (14)
for j =1,2.

2. Letp=1,2,...,N/2—1and j =1,2.
Consider the functions

0 () ap - cos(px) + an—p - cos((N — p)z), if j =1,
() =
P by - sin(pz) + by—p - sin((N — p)z), if j =2,
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oy ) (@) = b (), if =1,
rale) = {gp<x> — (@), it j=2,

G (2) = LeosPD) Fanpo - cos(N = p)a), ifj = 1,
p.J sin(pz) + ty po - sin((N — p)a), if j =2,

€ (.’L‘) — ’Uva<x) - vaj(x)7 Ifj = 17
i wp(@) — Coj(@), if j = 2.

Then

(bpj + hpyj,Cpj + €pj) ?
(Cp.j + €p.gs Cpj + €p.)
It is not hard to prove that ¢, ;, , ; are orthogonal to the functions h,, ;, € ;,

1. e.

(Cpj + €p,j)

H(Em + hp,j) -

(Up.jrhpj) = (Upjsepj) = (Cpjs bpj) = (Cpojs €p,j) = 0. (15)
This implies that
CyiiCo i)+ (hpis€pi 2
O‘I%,j = ||fp.j + Ppj — ( pyﬁgp?l + ﬁ‘;i 2p7j) (Cpj +€pj)|| = A1+ A2+ As,
where )
(fpj,ij)
Ay = ||ly; — - - Coiteni)ll
P s P+ leps P 79 )
(hp,j» €p,j) 2
AQZ‘h'— 0> P, Coi + €pi 16
P3G 12 + lepglP 27 T P (16)
and
Ay =2 <£ (i Gpg) - (Gpg + ) he (hpj>€pg) - (Gpj + €p,j)> . (17)
P ||€p,j 2+ Hep,j 2 > HCPJHQ + ”5:073'”2
Further, Ay = A1 1+ A12 — 2+ Ay 3, where
(gpjanj) ?
Arn = |[lpj — D Cpojll
PGl + llep 127
b, s )2
Ay = el 2 (18)
(ISpi11% + llep,i11%)
e (2 Go) (2 Go)
A1’3:(€7_ D.J> Sp.J <7.’ D:.J> Sp.J 6")-
P HCp,jH2 + Hep,j”2 P HCp,j’ 2+ Hep,j’ 2

Using , we get Ay 3 = 0. Also, we see that

2

Al =

1 1 1
b = b5 60) (e + - )
P a7 apd HCPJ’P H<p,jH2+ Hep,jHQ HCpJ’Z -




72 [. V. Brysina, V. A. Makarichev

=A11+ A2+ A,

where
11,0 = ([€pj — WCM ;
1 1 \?
Avrs = (6, Gpi)? ( - ) Tk
PIERIT\N1Gp g2 4 Nepl? 16p112 P
and

(ep,jv Cp,j) 1

A1,1,3=<€,‘—C,'7C,'>'< -
P ||Cp,j 2 on > ”CpJHQ + ||€p,j||2 ||Cp,j’

It follows from that Ay 13 =0.
Consequently

O‘JQDJ =A111+ A2+ Ao+ Ax + As.

2
By 7p,; denote HZ}(;)H . Using , we get

th(fj) = 1=,
and
0< Vpj < 1

Let us prove that

By construction

(i, Cps) = m(ap+an—p-qnpo), if =1,
P:J o SP,J ﬂ'(bp—l-bN—p‘tN,p,O), ifj =92
and
2 e
I6pal* = Lt o) 65 =1
il =

14 Bp0) 05 =2

If we combine these equalities with , we get

2
ap + AN—pgdN,p,0 ap + AN—pgdN,p,0
Al,Ll =T ap — P P P + AGN—p — z 1 217 L
T AN po

L+ q12V,p,0

(21)

(25)

(26)

2
QN,p,0>

(ap - qJQV,p,O —aN—p N p0)° + (an—p = ap - AN p0)? 7T(GN—p —ap - qNpo)?

(1 - q12V7p70>
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for the case j = 1.

Similarly,
bN—p — by - tNp0)?
Argg = 7T< pl 20)
+ tho
for the case j = 2.
Also, we see that
m pz"-af,—l—(N—p)Q-a%V_p), if j=1 o7
Ypj =
DsJ . p2T-b§+(N—p)2T-b?V,p),ifj:2-

It is not hard to prove that
2 Vp.i . p2r+02 . (N_p)Qr

% £ Ty e

where |
D:{(l”y)GRQ: w2-p2”“+y2~(N—p)2’“:m}.

T

By setting ¢ = a, and ¢ = by, we obtain

2r 2r, 2
p*"+(N—p)"q e -
( ) N,p,O’ if ] = 1,

s b, 7 2
4+q% ,0 7 p*"(N—p)*"
Al,l,l S - Y p2r+(N—p)27"t?V,p’0 9
1+t?\7,p,0 T pQT'(N—p)QT ) .] -
By and , it follows that
9 2(m+l)
P+ (N =p)* - e - 5 (%)
At < vpj- o 20t 1) 2 (P
P (N = p)* <1+W o7 (% ))

. N]\j(;(w:;) (1= ﬁ)2(n;(+1+73 + (]{’;)Zim:r) -¢7 (%)
" I=%)""""+(F)" e (F)
Hence,
A1 <7 N2 om; (%) ; (28)
where

(1 _ $)2(m+1—r) + p2(m+l-r) @?(«T)
n;(x) = (1— x)Q(m—‘,—l) + 22(m+1) @?(l’) .

Let us prove that n;(p/N) < 22"

We get
§j(x)

PR
((1 — 2)2mt1) g g2(mt) 60?(15))

ni(x) =
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where ,
C](x) _ ((1 o $)2(m+1—'r) + I,Q(m—i-l—r) . @i(x)>

. ((1 - w)Q(m—f—l—r) + $2(m+1—r) . ¢3($)>

/
% <(1 _ x)2(m+1) 4 p2(mt1) <P?($)) ‘
It can be easily checked that if m 4+ 1 = r, then
&i(z) = 2<pj(:r)<p;~(ac) ((1 — x)QT — x%) + 27"(,0?(33) ((1 — x)z’" — :L‘QT) +

+2r ((1 — :L')zr_l — xzr_lcpjf(w)) .

By the assumption of the theorem ¢; is an increasing differentiable function
and 0 < p;(z) < 1. Thus §;(z) > 0. Hence, nj(x) > 0 for any z € [0,1/2].
It is not hard to prove that if m + 1 > r, then

fj (l’) — 9 ((1 _ $)4m—27"+3 _ x4m—2r+3¢?(x))

+2§03($)(p;($)(1 _ x)Q(m+1—r)x2(m+1—T) ((1 o $)2T - x27’)
+2g0?(x)((m +1— 74)332(m77“)+1(1 _ x)2(mfr)+1((1 _ m)2r+1 _ x2r+1)
+(m + 1)x2(m+1—7’)(1 o x)?(m—i—l—r)((l - x)2r—1 - x2r—1))'

By the same argument, £;(z) > 0 and 7;(x) > 0 for any = € [0, 1/2]. Therefore
the function n;(x) increases on the segment [0,1/2].
Since p < N/2 — 1, we see that 7;(p/N) < n;(1/2 —1/N). By construction,

2(m~+1—r 2(m~+1—r
(1) G
Ui 1

+ 2 )

2o N)

2(m+1 2(m+1
G+E) V(G- E) 2 (-4
2(m+177") 2m+1_r k}
() (et G- 4) ()
_ 27‘. k=0

(D) (1 et - ) (G

k=0
It follows from the properties of the function ¢;(x) that

OS%(;;{)S%(;)SL (29)

If we combine this with

(2(m+k1—r) > < ( 2<m1<;+1) )
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we get

(1 1> 2(77:1 r)< (m]j 1) > <1+(_1)k 22 (4 - %)) (2"
mi (= — =) <o m_o
T\2 N 2(k§1)< 2(mk+ 1) ) <1+(71)k 90? (%7%» (%)k
Obviously, <1 1) )

Ny 5N <27,

Hence, nj(p/N) < 2. Combining this inequality with , we obtain (24)).
Let us prove that

N1
2
A2 < ypj-M”- <2) " Sami3 (30)
Using ([20]), we obtain
lepsll*

Ar1o = (lpj, ) 5
1<, 11% - (ISp.5112 + lleps11%)

It follows from that [|(,;||> > 7 and

o1+ llepl® = 7.

Therefore,
A1 12 < (s Gog)? - llepll* - 72

it follows that qN o<1 and tN o<1 If we combine

From ( ., and (|
D and (| . we get

these inequalities w1th
2 2 (2 2 2 2,2
(lp1,Cp1)” <27 (ag + aXy_p - ahpo) < 27° (ap +ak_,)

<2 p* - (ap- PP +aX_, - (N=p)7") =27 p 7 1.

Similarly, (€p2,(p2)? < 27 - p 2" - po.

Hence,
(Lp,js Cp,j)2 <2m-p 7. Vp.j

for j =1,2.
By construction,
(rnp - cos((p + kN)x)+
+anpk - cos(N(k+1) —p)z)), if j =1,
(SNp k- sin((p + kN)z)+
s - sin((N(k + 1) — p)a), if j =2

18

M
)

ep,j(2) =

\Mg
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This implies that

o0
Yy (’I“12\77p7k + q?v,;;,k) ,ifj =1,

ll€p.s 2= =
> (30 + ) » i35 =2

Using @ and , we get

P >2(m+1) .

lepsll? < M -7 (£ (33)

If we combine this inequality with , we obtain
p4(m+1)—27"

2 e
A17172 S 2M ’ ’YPJ N4(m+1) :

Since p < N/2, it can easily be checked that holds.
Let us show that )

N\ " M

A2 <pj <2> " 9am (34)

It follows from , , and that

1 ( D )2(m+1)

) 2(m+1—r)
Ao <21p Typi— | =

p

By assumption, m + 1 > r and p < N/2. Therefore,

N 2(m+1-r) 1 N —2r M
Arg <pg-2M- <2> SN2 TP <2> 22m+1

Let us prove that

N\ L=,
A2§<2> ek (35)

Using , we get

(hpj7€pj)2
Ay = ||hp,j||2 + . : 7" (Cp,j +€pj s Cpg T Ep,j)
([1Cp.5112 + lleps11*)

_2 . (th’epm])
1Cp,il1% + llep,; 11
If we combine this with , we obtain

: (hp,j s Cpj T €pyj )-

(hpj>€pj)2 (hpj76pj)2 2
Ay = |y P+ el g e ) )
P 1Cpi 112 + llep,s112 1Cp. 11 + llep,s112 P
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By construction, we have

o
1hpa|* = WZ ( apykN + a (k+1)N— p)
k=1

w(p+ N) 23 (0 kN a2 o + (R + DN = p) e, ) =

k=1
(p+N)~ Hh(r
Similarly, [[hp2l|* < (p+ N)~ Hh . Thus
Il < 0+ N> - [0 5= 1.2
Combining this with and p < N/2, we get
-2
Wyl < 2=ps 1% 1= 1= (N g
p,J = (p—}-N)Qr N2r (1 + %)21" - N2 92r 2 :
Inequality follows.
Let us show that
N\ 1
40l <2 s 1= (5 ) (37)

From and it follows that

(hp,js €p,j)
A3 =20, i, hy i) — 2 - : E,',C,'+67'
3 ( 12} p,]) HCPJH2 n ||6p,j||2 ( ;72 Sp,J P])
16p,i 112 + llep,; 11
2(€p7ja<—p,j) ) (hp7j,€p,j) (HC ||2+ ||€ ||2) — _2(
(1o 5112 + llepgl® "
Therefore,

(hp,jv Cpj + €pj)+

lpjsCpg) - (hpjs€pj)
1,512 + llepsll?

1€p,s 117 + ll€pl
If we combine this inequality with , , , and p < N/2, we obtain

|A3| <2 % 2m - Tp,j* p ( /7?] v ( )erl

pm+1fr
= 2\/2M (1= ) ————
Vp,j ( %,J)Nmﬂ(p TN
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m—+1—r

p
N ()

(N/Q)m-i-l—r
< 2\/2M’Yp,j(1 — M) - TN

N\ 1

Inequality is proved.
It follows from , , , , and that

—2
o . < <N> ' (’Y 4 L=, + M2, n My, 4 V2Mp,4(1 _’Yp,j)>
P = .j .

= 2\/2M'Yp,j(1 - 'YPJ) <

2 922r 24m+3 22m+1 om+r
Since 7,5 € [0,1] (see (23])), we have

11— 1
Tp,j T+ 227~p7] <1and 7p,j(1 - 'Ypo') < 9

Hence,

—2r / 2
a§j§<N> <1+ 2Mo M M )
) 2 om+r+1 22m+1 24m+3 |’

where p=1,2,...,N/2—1 and j = 1,2. If we combine this with and ,
we get

N\ oM M M?
wien‘ﬁN ¢ —w]l < <2> (1 + Q\ri;l T oot T 24m+3> :
Using , we see that inequality @ is satisfied for any non-constant function
fews.

This completes the proof.

Remark In [I], A.N. Kolmogorov proved that

dy (W5, Lol . 7)) = (Z) - (39)

Therefore the estimate can be expressed as follows:

—~ —~ M2 M V2M
ELy—m,7] <W2T’VN> <dy (W2T’L2[_7r’7r]> \/1 + 94m+3 + 92m+1 + omtril

This means that Vj is an almost best linear space for approximation of WN/{ in
the norm of Lo[—m,7].
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Approximation properties of generalized Fup-functions

Consider the generalized Fup-function
1 [ . (sin(t/N)\™
m(x) = — e — F(t/N)dt
Prnta) =5 [ et (08 (t/N)

where N is an even natural number, m € N, m < N — 2 and F\(t) is the Fourier
transform of the mother function f(z) € La(R) such that

(i) supp f(z) = [-1,1],
(i

(iii

f(z) is an even function,
f(z) > 0 for any = € [—1,1],
7 fla)de =1,

F(m) >

Using Paley—Wiener theorem, we get

1V

i)
)
)
(v)

m+2 m+2

supp fnm C {—N, N] : (39)

Let

zr 2k-m-2+ N r 2k—-m-—-2-—N
- me
T N

INmk(E) = fNm ( I

forany k=1,2,...,m+1 and

N

INmk(x) = fNm <ji _2hmm—2- N)

fork=m+2,...,N.
Denote by Ly, the space of functions ¢ such that

N
T) = ch - fNmg(z), T € [—m, 7.
k=1

The aim of this section is to prove the following result.

Theorem 8 If m + 1 > r, then there exists M > 0 such that

—~ N -r
ELQ[—W,W} (ngLN,m> < <2> 1+e, (40)
where
M? N M V2M
E =

24m+3 922m+1 + om+r+1
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Proof.

First we shall show that there exists an almost-trigonometric basis of the space
Ly m.

Let us expand the function fy, ; in the Fourier series:

o ™
i 1 .
fNmp(T) = Z cj-€9", where ¢; = 5 / INamp(@) - eI da.

Jj=—0o0 o
For the case k =1,2,...,m+ 1 we get ¢; = I} + I, where

1 T 2k—m -2+ N .
Y N ST R
2 ’ T

N

and

1 T z 2k—m—-—2—-N -
L=o | fym(=- Lo U,
2 277/va <7r N > e

After the change of variables we obtain

 2k—m—2
1 2k—m—2—N -
I, = 5 oxXP (—z’jw- mN ) . / INm(z) - e V" dz,
72721@7]3172
2_2k:—]:]n—2
1 2k —m -2+ N |
I, = 5 &XP <—ij7r- mN + > . / INm(z) e " dz.
_ 2k—m-—2
N
Since
. 2k—m—-—2—N . 2k—m -2 .
exp | —ijm - I =exp | —ijr - ———— |- exp(ijm)
o . 2k—m—2 exp(—ijr) = e . 2k—-m—-24+N
=exp | —ijm - ————— | - exp(—ijm) = exp | —ijw -
p J N p{—=v p J N )
we get
2_2k—m—2
1 2k—m—2—-N p
Cj = 5 eXp <—ij7r- mN > . / Inm(z) - e Y2dz.
_2_2k—m,—2
N

Using 1 <k<m+1and m < N — 2, we have

_2_2k—m—2<_1S_m+2 and 2_2k—m—2 m+2.

Y
—_
v
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If we combine these inequalities with , we obtain

1 % -—m—-2-N\ [ )
cj = - exp (—ij7r~ m > . / fnm(z) - e V™dz.

2 N
Therefore o 0N
1 .. —-—m—2— .
¢j = 5 exp <—zy7r- I ) - Fnm(jm). (41)
Similarly we can obtain fork=m+2,...,N.
Consequently
1 & . 2%k-m-—-2—-N , y
uma(@) =5 Y exp (‘w Ty ) Fym(jm) 69 (42)
j=—00
holds for every k =1,2,..., N.
Consider the functions
N
2 ) 2k—m—2—N
CN,m,p(x) = N kZ_l fN,m,k(aj) - €Xp (Zpﬂ : N >
forp=1,2,...,N.
By construction,
1 & g
CNmp(@) = N Z apj - Fnm(jm) - €97,
j=—00
where
al 2% —m—-2-N
apj =Y exp <i7r(p -J)- I >
k=1
We have
N . k—1
_ . . m - 2(p—J)
apj = exp (m(p —7) (—1 - N)) . ; <exp (m TN
N (=1)™, if j =p+ Ngq, where q € Z,
B 0, otherwise.
Hence
o .
(Nmp(®) = Y Fnm(w(p+ Ng)) - (—1)74 - /PN (43)
q=—00

forp=1,2,...,N.
Consider several cases.
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1. Let m be an even number. By 7 we obtain

CNmp(@) = Y Fym(n(p+ Ng)) - el @HNO™, (44)

g=—00

By definition,

sin(m m i -
Fm(aN(q-+ 1) = (2R D)) Fww+¢»={%mfiqu_L

From property (iv) of the function f it follows that

0, if -1,
Fnm(nN(g+1)) = g # .
1, if ¢=-1.
Therefore
CN,m,N(CU) =1.
Let
3 (CNmp(@) + CNmN—p(x)), if p=1,2,...,N/2,
% m,p— r)— m _plx)),
wN,m,p(x) = zl(CNv P N/2( ) CN,‘,3N/2_ p( )
if p=N/2+1,...,N—1,
CN,m7N(-'II), lf p= N
By the above
YNmN(T) =1 (46)

Using , we obtain

CNm N—p(T) = Z Fnm(=7m(p— N(q+1))) - e~ P~ Nla+)z,

It follows from property (ii) of the function f that the function F' is even.
Therefore

UNmN—p(@) = D Fnm(m(p— N(g+1))) - e 0Nz

Hence, for any p =1,2,...,N/2 we get

YN mp(T) = Z Fnm(m(p+ Nq)) - cos((p + Nq)x).

g=—o00
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Since F' is even function, we obtain

o

UNmp(r) = > (Enm(n(p+ Ng)) - cos((p+ Ng)z)
q=0

+ENm(m((¢+ 1)N —p)) - cos(((¢ + 1)N — p)x))

forp=1,2,...,N/2—1 and

YNmNy2(T —QZFNm< 2q+1)]§> s<(2q+1)]§x>.

In the same way,

[e.e]

UNmp() =Y (FNm(x(p— N/2+ Ng)) - sin((p — N/2 + Ng)x)
q=0

+FNm(r((g+1)N —p+ N/2)) -sin(((¢+ DN —p + N/2)z))

forp=N/2+1,...,N — 1.
2. Let m be an odd number. In this case, using , we get

Cvmp(@) = Y (~1)7- Fym(n(p+gN)) - ez,
q=—00
This implies that
CN,m,N(-T) = Z (_1)q . FN’m(ﬂ‘N(q + 1)) . eiN(Q+1)$_
q=—00

If we combine this with , we obtain

(NN (z) = —1.
Let
% (CN,m,p(x) + CN,m,pr(x)) y if p= 17 27 ceey N/27
O () = 35 (CNmp—N/2(2) = Cnman2—p(2))
M, =

if p=N/2+1,...,N—1,
CN,m,N(l'), if p=N.

As above, it can be proved that

o0

N mp(@) =Y (=D Fnm(m(p+ Ng)) - sin((p + ¢N)z)
q=0

+ENm(m((¢+ 1)N —p)) -sin(((¢ + 1)N — p)x))

(50)
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forp=1,2,...,N/2 -1,

[e.e]

N2 =2 (=1 Fym (W(Zq + 1)]2V) sin ((2q - 1)];795) . (51)
q=0

[e.9]

UNmp(@) =Y (D) U(Fnm(m(p — N/2+ qN)) - cos((p — N/2 + qN)z)—
q=0 (52)

—Fnm(m((¢+1)N —p+ N/2)) - cos(((g + 1)N — p+ N/2)z))
forp=N/2+1,...,N —1 and

wN,m,N(x) = -1 (53)

Consider the functions

1
ONmo(®) = (=)™ - YNmN(T), wNmo(z) = Iy m(7N/2) YN m,N/2(T),

YN mpin2(®)/FNm(mp), if mis odd,
,UN,’n’L,p(x) - i .
wN,m,p(x)/FN7m(7Tp), if m is even
and
UNmp(®)/FENm(mp), if mis odd,
WN,m,p(T) = . .
wN,m,anN/Q(fU)/FN,m(?Tp), if m is even
forp=1,2,...,N/2 —1.
Let us remark that Fi,,(mp) # 0 for p = 1,2,...,N/2. This statement will
be proved later.

From - it follows that

UNmo(x) =1,

s N (N
WN mo(z) = kz_:o <yN7m7k cos <2(2k + 1)x> + ZN m, i S (2(2k + 1):U>> ,
oma(2) = 3 (23 c0((p + KN)2) + @y cos((( -+ DN — p))
k=0
and
o0
WNmp(@) = > (SN mpok SI((p + kN)2) + tympi sin(N (k + 1) — p)a))

B
Il

0

forp=1,2,...,N/2 — 1, where

L+ (=)™ Fygm (75 - (2k+1))
2 Fym (7 5)

YNmk =



Bicuuk XHY, Cep."Maremaruka, Ipukia(Ha MaremMaTuka i Mmexanika”, tom 84 (2016) 85

g 1= (=)™ Eyg (7 5 - (2k+1))

N = (CDF ey (55)
g = (<1 D HE LT (56)
g = (e EnlrVG 1) ) -
s = (1) DenIELLT) 59
ENmp = (—1)mEFDFL FN,m(ngﬁgﬂ(:p)l) —?) (59)

We see that the system {vn m p, w N’m’p};’\/:/g—l constitutes an almost-trigonometric
basis of the space Ly .

Now we show that all conditions of Theorem [7 are satisfied.

First note that condition (iii) of Theorem [7|is satisfied.

Secondly, from and it follows that

Fnm (m(N p))>2
FN,m(ﬂ—p) .

2 42 _
ANmp,0 = tNmp,0 = <

By construction,

sin (mp/N

Frntn) = (PN p ey

g - (SR et )

() )

This implies that

2(m+1)
/2 _ 2 _(_P 2 (2
N,m,p,0 — qumvpvo - N —p ¥ N )

where Fla(l— 1))
(1 —
="
Let us prove that the function ¢ is positive, increasing and differentiable on
[0,1/2].

It follows from properties (i) and (ii) of the function f that

1
F(rnt) = 2/cos(ﬂ'tm)f(x)dx.
0
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For any z € [0,1], t; € [0,1/2] and t3 € [0,1/2] such that ¢; < t2 the inequality
0 < wt1x < wtgxr < 7/2 holds. Since the function f(z) is positive (see property
(iii)), we have cos(wtix)f(x) > cos(mtaz) f(x). Therefore F(wty) > F(wta). This
means that the function F'(7t) decreases on the segment [0,1/2]. Hence, F(nt) >
F(7/2) for any t € [0, 1/2]. Furthermore, cos(zm/2) > 0 for every z € [0, 1). This
implies that the equality

1
/cos xm/2)f(z)de =0
0

holds if and only if f(z) = 0 for almost every = € [0,1]. The last statement
contradicts the properties of the function f(x). We see that F'(r/2) > 0. Therefore
F(xt) > 0 for every t € [0,1/2].

Moreover, by construction,

P :(sm(g@))y“_ ™
N,m(7p) F( >>0

= N
for p = 1,2,...,N/2. This implies that the functions vy, , and wy,my,,, were
defined correctly.
Further,

1
F(n(1—1t)) =2 [ cos(m(1l —t)x)f(x)dx.
[~

Consider t1,t2 € [0,1/2] such that the inequality ¢; < t2 holds. We obtain
0<m(l—to)x <m(l—t1)x < forall z € [0,1]. If we combine this with property
(iii) of the function f, we see that cos(m(1 — t1)z)f(z) < cos(m(1l — ta2)z) f(x).
Equivalently, the function F'(7w(1—t)) increases on the segment [0, 1/2]. Therefore
F(n(1 —t)) > F(r) for t € [0,1/2]. From property (v) of the function f(z) it
follows that the function F(w(1 —t)) >0 for ¢t € [0,1/2].

Thus the function ¢ is positive and increasing on the segment [0,1/2]. In
particular ¢(t) < ¢(1/2) =1 for any ¢ € [0,1/2].

By Paley-Wiener theorem, the function F' is an entire function. Therefore the
function ¢ is differentiable on [0,1/2].

Finally we shall show that the last condition of Theorem [7] is satisfied.

By construction,

Fnm(mp) = <Sin7r<;r;)]<fN)>m+l o (l]\zfj) )

sin (k + ﬂ'p/N))erl o (7r(p + k:N))

FN,m(”(p‘i‘k'N)) = < 7T(p+kN)/N N
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and

» = (s ‘Wf//f?)m“

m((k+1)N —p)
F
< ( Y
Hence, we obtain

(Funlrlo Y () (R

(Y ()™

" <F(7T((k+ 1)N—p)/N))2
F (mp/N)
It follows from the properties of the function f that

1
= / s(tz) f(x)dx <2/\ (x)|dx
0
1 o0

~ [ 1@z = [ st -

-1

Fym(m((E+1)N

and

Moreover, by the above F(mp/N) > f(n/2) >0 forp=1,2,...,N/2.
Therefore

(FNWJE(;SS(;];N))Y = Fz(;p) ' <p +pkN>2<m+1>

and

Fya(n((k + ON = p)\? _ 1 b\ 2D
( Fym(p) ) SF%wm'<w+nN—p> |

If we combine this with 7, we obtain

o0 o0
2 2
D (PR + Wompe) = D (N + k)
k=1

S Fnm(m®+kN)\? ([ Fxm(r((k+1)N —p))\>
-2 (( Enm(mp) ) +< FNm(mp) ) )
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. 1 | 0o < D >2(m+1) +< D >2(m+1)
=Py 2\ \pen kT )N —p

1 p A\ 2(m+D) ( 1 1 )
= —_ . + .
F2(7/2) (N) ; (k+ p/N)2m+D (g 41— p/N)20m+D)
Since 1 > p > N/2, we get

— 5 2 — /2 2 P 2(m+1)
Z ("X mpk T N ampk) = Z (SNmpk T N mpk) < (ﬁ) - M,

k=1 k=1
where
1 > 1 1
M=——7—" + . (60)
F2(7T/2) ; ((k_}_]{[)ﬂmﬁ-l) (k+]{[+%)2(m+l)>

We see that all conditions of Theorem are satisfied and inequality holds.

This completes the proof.

Remark. Actually, it was shown in the proof of Theorem [§|that the dimension
of the space Ly, is equal to N. Therefore the system { f]\[’,n’k},]g\[:1 is linearly
independent. Moreover, by definition of the Kolmogorov width, we see that

dy (Wg’,m[—w,ﬂ) < Epyforn] (I/IN/Q,LNM> . (61)
If we combine this with and , we get

dn (WQT,L2[—7T,7T]) R D - <VT/2T’LN,m)

S dN (W§,L2[—7T77T]> V 1 +€(Na m, T)v

where )
M M V2M
5(Na m, T) = 24m+3 + 92m+1 gm+r+1°

Furthermore, it follows from and the equality
S
4 on’
— k 90
that
2 =1 1 ™
M< —. = .
~ F?(mw/2) ; K+ F2(m/2) 45

Hence,

Nym—oo g (WQT,LQ[—TF,?T]) -
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This means that Ly, is almost the best space for approximation of the class

WQ’" in the norm of La[—m, 7]. In other words, the generalized Fup-function fy n,
which is a function with a local support, has good approximation properties.

Conclusion

In this paper we introduce a method of construction of function spaces that
combine the following convenient properties:

1) an existence of the basis that constructed using shifts of one compactly
supported function; besides, as it can be seen from (39) a support of this
function can be made arbitrarily small;

2) smoothness of functions of these spaces; moreover, the degree of smoothness
of these functions can be arbitrarily large; for example, if the mother
function is mups(x), we get infinitely differentiable generalized Fup-
function;

3) the dimension of these spaces can be quite arbitrarily;

4) good approximation properties; the class WQ" is a classic object of
investigation in approximation theory, theorem [8|actually means that spaces
of shifts of the generalized Fup-functions approximate W3 well; furthermore,
these spaces are almost the best spaces for approximation of W{ in the norm
of Lo[—m,7;

The last property is the most important.

Notice that spaces of shifts of the generalized Fup-functions have good
approximation properties because of existence of the almost-trigonometric basis.

We stress that the almost-trigonometric basis theorem is another important
result. Actually, if it can be proved that some space of functions has an almost-
trigonometric basis, then this space has good approximation properties.

In spite of all convenient properties, there are many unsolved problems relating
generalized Fup-functions. The following open questions are of interest:

1) How can some generalize Fup-function be computed (generally, for this
purpose the Fourier series can be used)?

2) Can convenient asymptotic expansions of generalized Fup-functions be
obtained (we note that the first term of asymptotic expansions of these
functions was already obtained in [26])?

3) Can the inequality be replaced by equality
ELQ[—’?T,’TI'] <W£a LN,m) =dn (WQT, LZ[_T‘-7 ﬂ-])

(notice that by theorem [5| this equality holds, if up(z) is a mother-function
of the generalized Fup-function)?
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4) Can it be proved that
By (Wios L) < div (Wi, ) - (14 (N m)),

where a(N,m) — oo as N,m — oo (see theorem [4] for the up-function
case)?

These will be the object of another papers.
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